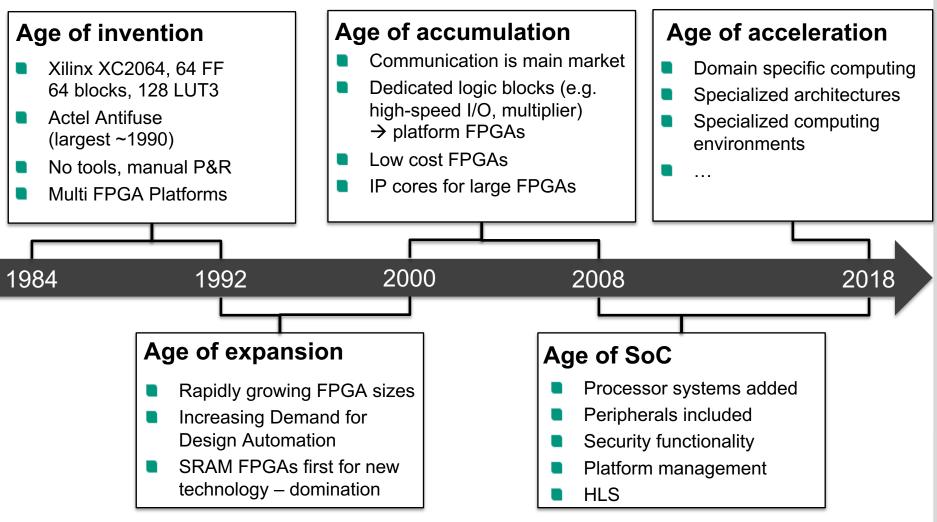

Towards heterogeneous FPGA architectures and application examples

Oliver Sander

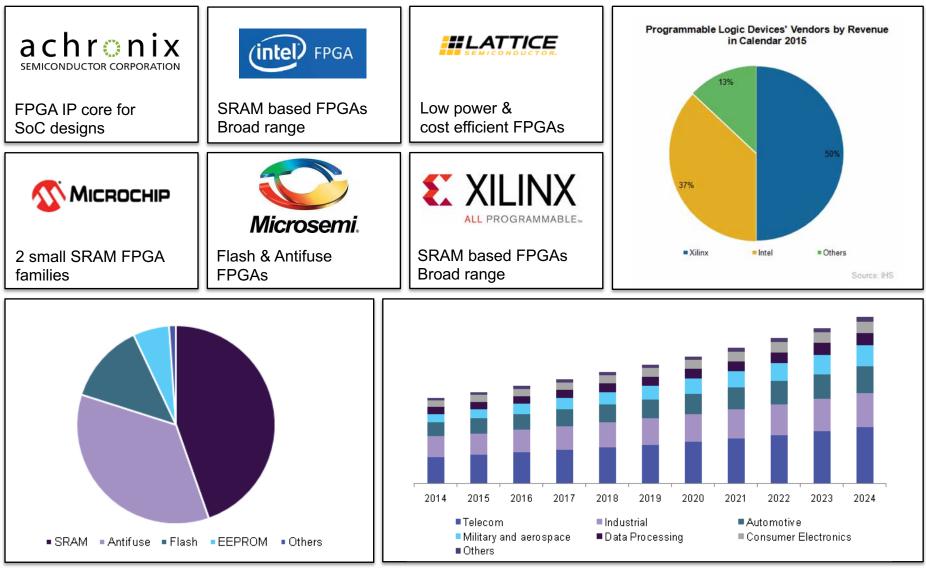
Overview



Comments/Disclaimer

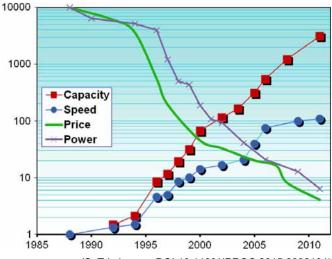
- (1) Talk content is biased towards Xilinx FPGAs. This is neither a statement nor a recommendation.
- (2) Talk focuses on high-end architectures to show technical development.
- (3) Content is a personal selection and not exhaustive.
- (4) Versal Information comes from XDF Frankfurt (links need to be added)

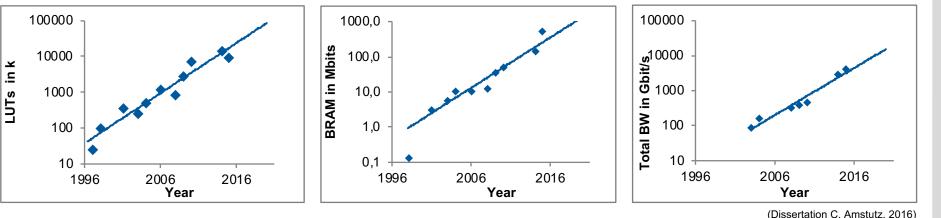
Evolution of FPGAs



Ages are defined in a paper by Stephen Trimberger (2015) and in an interview with Ivo Bolsens (Xilinx CTO) in 2018

FPGA market or which vendors did survive?


What about Intel vs. Xilinx?


FPGAs for cost sensitive or mid-range products	 focus on logic/money limited IO bandwidth 	KINTEX. UltraSCALE+
High performance FPGAs	 maximum LUTs maximum DSP slices maximum internal memory maximum IO bandwidth (30 Gbps, 58 Gbps) 	VIRTEX. UltraSCALE+
FPGA + HBM	 derived from HP FPGAs integration of large memories (GB) 	VIRTEX. UltraSCALE+
FPGA + Processor System	 derived from HP FPGAs multiple processors memory and caches peripherals 	ZYNQ. UltraSCALE+
FPGA+Processor+ ADC/DAC	 derived from previous high performance ADC/DAC 	ZYNQ. UltraSCALE+

FPGA complexity over the years in numbers

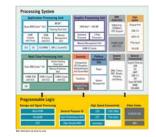
- Limited feature requirements (transistors, wires) of SRAM FPGAs allowed early adoption of new technology nodes
 → front-runner
- Exponential progress in compute power, memory, and bandwidth
- Dramatic increase in power efficiency
- Dramatic decrease of price per logic gate

(S. Trimberger, DOI 10.1109/JPROC.2015.2392104)

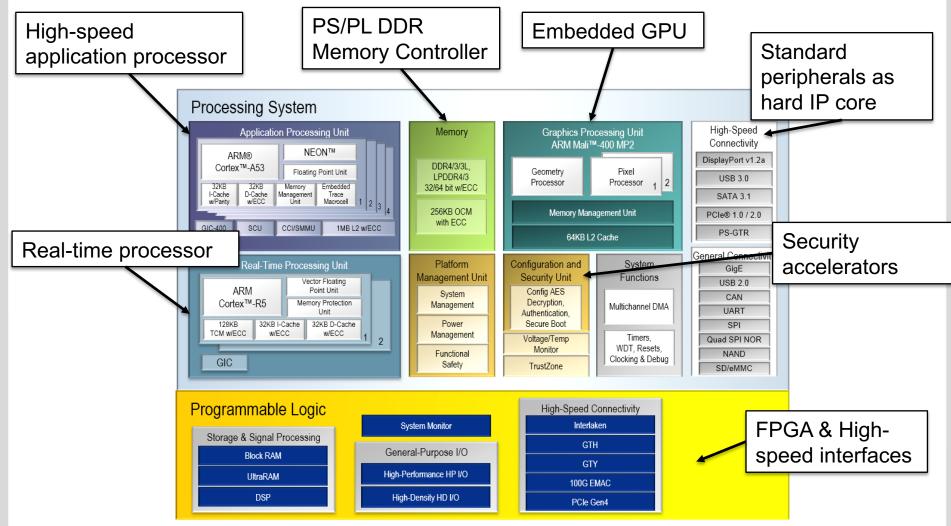
Features in modern FPGA architectures

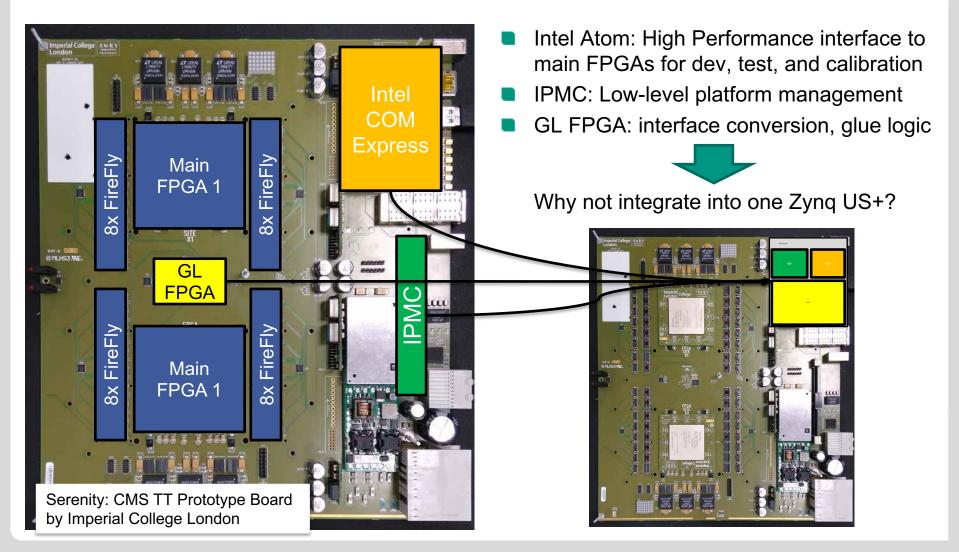
	Kintex UltraScale FPGA	Kintex UltraScale+ FPGA	Virtex UltraScale FPGA	Virtex UltraScale+ FPGA	Zynq UltraScale+ MPSoC	Zynq UltraScale+ RFSoC
MPSoC Processing System					1	1
RF-ADC/DAC						1
SD-FEC						1
System Logic Cells (K)	318-1,451	356-1,143	783-5,541	862-3,780	103-1,143	678-930
Block Memory (Mb)	12.7-75.9	12.7-34.6	44.3-132.9	23.6-94.5	4.5-34.6	27.8-38.0
UltraRAM (Mb)		0-36		90-360	0-36	13.5-22.5
HBM DRAM (GB)				0-8		
DSP (Slices)	768-5,520	1,368-3,528	600-2,880	2,280-12,288	240-3,528	3,145-4,272
DSP Performance (GMAC/s)	8,180	6,287	4,268	21,897	6,287	7,613
Transceivers	12-64	16-76	36-120	32-128	0-72	8-16
Max. Transceiver Speed (Gb/s)	16.3	32.75	30.5	58.0	32.75	32.75
Max. Serial Bandwidth (full duplex) (Gb/s)	2,086	3,268	5,616	8,384	3,268	1,048
Memory Interface Performance (Mb/s)	2,400	2,666	2,400	2,666	2,666	2,666
I/O Pins	312-832	280-668	338-1,456	208-832	82-668	280-408

New Features in Virtex Ultrascale+ (16 nm FinFET+)


- Ultra RAM Memory blocks (4kx72)
- Up to 8 GB HBM integrated DRAM (460 GB/s)
- 58 Gb/s PAM4 transceivers, 32 Gb/s
- PCI GEN3 (6x) and GEN4 (4x)
- 100G ethernet MAC with KR4-FEC & 150 G Interlaken cores

- Part 2 - MPSoC and application examples




Programmable MPSoC – Zynq Ultrascale+

http://www.xilinx.com/products/silicon-devices/soc/index.htm

Example: Integrated IPMC for HL-LHC CMS L1 Track Trigger

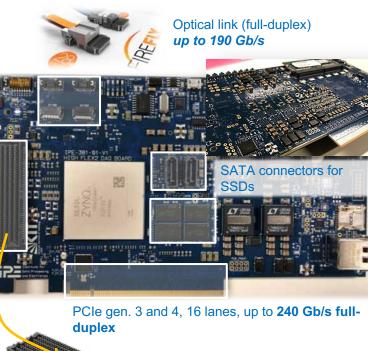
Zynq US+ on multi purpose platform HiFlex 2

Photon science

- New generation of detectors for beam diagnostics
- Diagnostics and stabilization of laser systems

Superconducting sensors and quantum technologies

- Readout of superconducting sensor arrays
- Control- and readout of qubits


High Energy Physics (HEP)

- NA62 (SPS-CERN) fast "low-level" trigger system, GPU-based
- High Level Trigger (HLT) based on GPU- FPGAs accelerators

Hardware platform for Artificial Intelligence algorithms

Heterogeneous FPGA- GPU system based on Machine learning

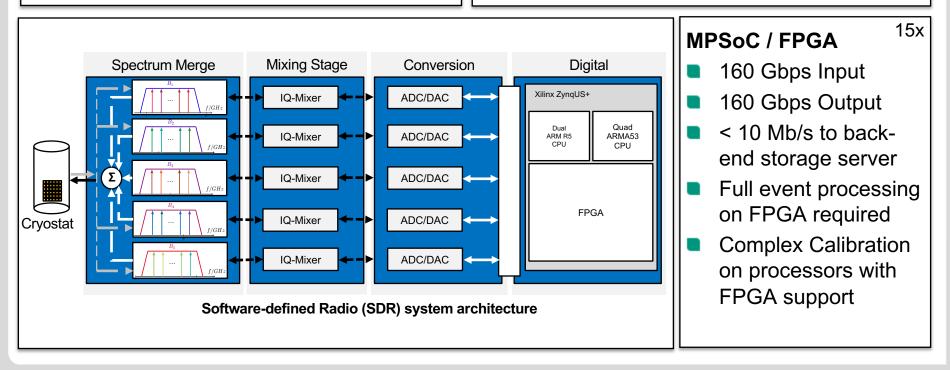
FMC+ connector:

160 lines @ 2 Gbps

20 tranceivers @ max 28 Gbps

Example: DAQ for the ECHo experiment

Poster N. Karcher


15x

ECHO

The Electron Capture ¹⁶³Holmium experiment **ECHo**^[1] will measure the electron neutrino mass by analyzing the energy spectrum in the electron capture process of ¹⁶³Ho.

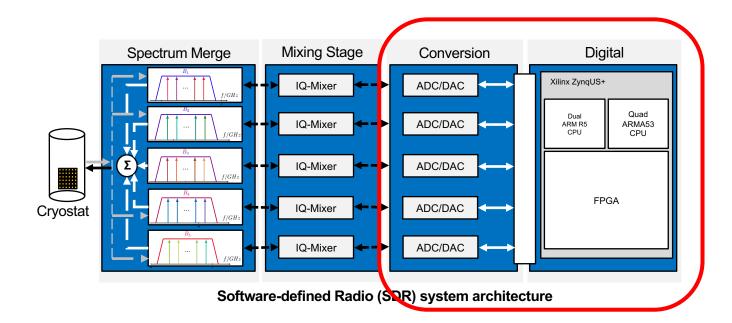
Technology

- 800 superconducting sensors (MMC)
- 10 events per pixel per second
- 400 channels, one transmission line
- Frequency division multiplexing
- 4-8 GHz, one channel each 10 MHz

Hardware Module

Hardware Module & Platform Library Hardware Build System Hardware Build System Hardware Build System Hardware Build System Hardware BSP for Yocto Framework Yocto Framework

Service Hub


IPE tooling environment for Zynq Ultrascale+

Once more: DAQ for the ECHo experiment

Why not integrate the ADCs/DACs into a heterogeneous MPSoC platform?

Talk R. Gebauer Zynq Ultrascale+ becomes more heterogeneous

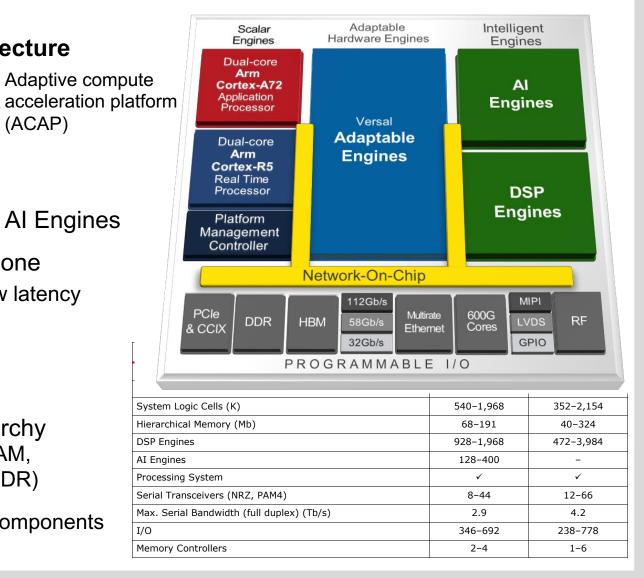
Xilinx integrated high-performance ADC/DACs → RFSoC

	Baseband	Wireless Radio		Backhaul, Remote-PHY	Phased Array Radar / Radio	
	ZU21DR	ZU25DR	ZU27DR	ZU28DR	ZU29DR	
12-bit, 4GSPS ADC	-	8	8	8	-	
12-bit, 2GSPS ADC	-	_	_	-	16	
12-bit, 4GSPS ADC 12-bit, 2GSPS ADC 12-bit, 6.4GSPS DAC	-	8	8	8	16	
SD-FEC	8	_	_	8	-	
Application Processor Core		Quad-core ARM Cortex-A53 MPCore up to 1.5GHz				
Real-Time Processor Core		Dual-core ARM Cortex-R5 MPCore up to 533MHz				
High Speed Connectivity		DDR4-2600, PCIe Gen3 x16, 100G Ethernet				
Real-Time Processor Core High Speed Connectivity Logic Density (System Logic Cel DSP Slices	lls) 930K	678K	930K	930K	930K	
DSP Slices	4,272	3,145	4,272	4,272	4,272	

Ge	Gen 1		Gen2 Gen3		en3	
ADC	DAC	ADC	DAC	ADC	DAC	
4.096	6.554	2.275	6.554	5.0	10.0	GSPS

- Part 3 - Next generation FPGA(?) architecture

Versal - Architecture Overview


(ACAP)

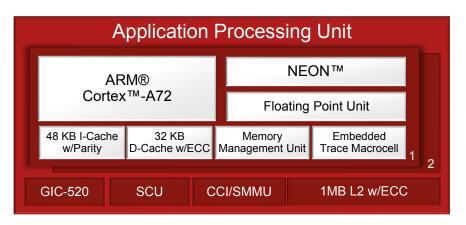
It is Xilinx' newest architecture

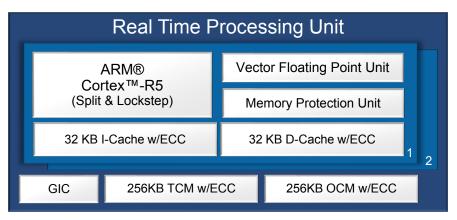
- More heterogeneous]
- More complex

Key Features

- FPGAs + Processors + AI Engines
- Network on Chip backbone
 - High bandwidth & low latency
 - **Guaranteed QoS**
 - Memory mapped
 - built in arbitration
- Complex memory hierarchy (LUTRAM, BRAM, UltraRAM, Accelerator RAM, HBM, DDR)
- + optimizations in FPGA components

Versal – Scalar Units


Dual-Core ARM Cortex-A72 application processors


- Arm-v8A architecture
- Up to 1.7 GHz
- 2x single-threaded performance (DMIPS Versal vs. Zynq US+)

Dual-Core ARM Cortex-R5 realt-time processors

- Arm-v7R architecture
- Up to 750 MHz
- Low latency and deterministic
- Supports lock-step
- Internal memory

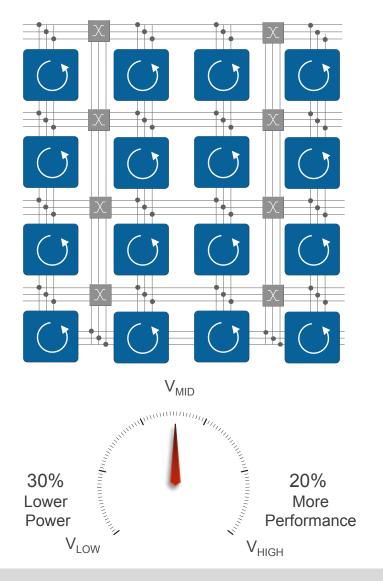
Peripherals

VELOPER RUM

Ethernet, SPI, I2C, CAN, UART, GPIO, USB, timer-counter, watchdog

Versal – Adaptable Engines

For traditionalists: This is the FPGA part

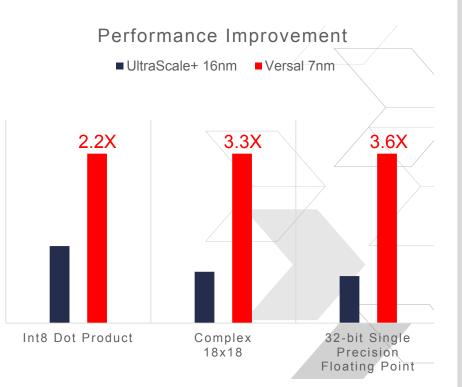

Some known facts

- 6 Input LUTs
- Each CLB has 32 LUTs and 64 FF (4x density compared to US+)
- 16 LUTs in a slice can be
 - a 64 bit RAM
 - **32-bit shift registers (SRL32) or two SRL16**

Internal connection of LUTs possible

- 4x clock, 4x set/reset, 16 clock enable
- 3 step voltage-scaling supported

Versal - DSP blocks


New key features

DEVELOPER

06.03.19

20

- More than 1 GHz of performance
- Integrated FP32, FP16 floating point
- Integrated complex 18x18 operations
- SIMD support for add/sub/acc (dual 24 bit, quad 12 bit)

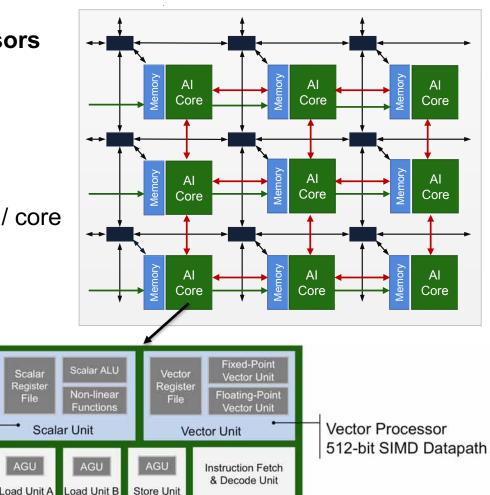
Karlsruhe Institute of Technology

Versal - Al tile architecture

1.3 GHz VLIW / SIMD vector processors

Parallelity

- VLIW: 7+ operations / clock cycle
- SIMD: 512 bit vector datapath
 (8 / 16 / 32 bit & SPFP operands)
- Up to 128 INT8 MACs / clock cycle / core


Memory

- 16 KB Internal program memory
- 32 KB data memory (parallel)
- Integrated DMA logic

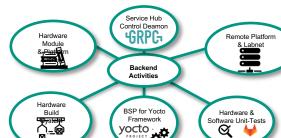
32-bit Scalar RISC Processor

Local, Shareable Memory 32KB Local, 128KB Addressable

Stream

Interface

Memory Interface


Conclusion

FPGAs become more and **more heterogeneous** devices

- Zynq US+: FPGA & CPU & Peripherals
- RFSoC: Zynq US+ & ADC & DAC
- ACAP: FPGA & CPU & Per. & VLIW/SIMD

Enables high functional integration (including control, calibration, and test software)

- Giant leaps in **tooling required** to leverage potential
- KIT IPE strongly believes in benefits of heterogeneous architectures → baseline for various projects

Thank you

Left intentionally blank