Lorentz Angle Measurement in Irradiated CMS Pixel Sensors

Setup, Simulation and Results

Paul Schütze for the DESY CMS Pixel Group 5th Annual MT Meeting, Jena 06.03.2019

Motivation

- CMS Experiment
- Lorentz Angle

Measurement Setup

- Principle
- CMS Pixel Telescope
- Analysis

Simulation

Results

- Lorentz angle dependencies
 - Extrapolation to CMS Operating Conditions

CMS Detector

- General purpose detector at the LHC to measure the processes of high energetic particle collisions
- 3.8 T magnetic field
- Precision particle tracking with silicon sensors

CMS Pixel Detector

- The innermost part of the CMS Detector is the Pixel Detector
- The Pixel Detector measures the particles track for information on ...
 - the particle momentum
 - vertex positions (even more important for high pileup)
 - secondary vertices \rightarrow B tagging
- Exchange of the Pixel Detector during the eYETS 2016/17
 - 4 Barrel Layers + 3 Endcaps
 - Expected irradiation of $\Phi_{eq} = 1.5 \times 10^{15} \text{ n/cm}^2$ for the innermost layer

CMS Pixel Detector

• The CMS Barrel Pixel Detector module

Twisted pair cable

HDI (High Density Interconnect, signal and power handling)

n+-in-n silicon sensor

16 readout chips, bump bonded to sensor

Base strips for mounting

- Sensor:
 - n⁺-in-n sensor technology
 - 285 um thickness
 - 150 x 100 µm pitch
 - 52 x 80 = 4160 pixels/ROC
 - 16 ROCs → 4160 x 16 = 66560 pixels/module

Pixel Detector Resolution

- Intrinsic resolution for binary readout tracking detectors: $\sigma = \frac{d}{\sqrt{12}}$
- Position resolution can be improved by charge sharing between multiple pixels

DESY. | 5th Annual MT Meeting, Jena | Paul Schütze | 06.03.2019

Lorentz Angle

• Charge carrier drift inside the sensor without magnetic field:

$$\frac{d\vec{r}}{dt} = -\mu\vec{E}$$

• Charge carrier drift inside the sensor with magnetic field: $\begin{pmatrix} \vec{z} & \vec{z} & \vec{z} & \vec{z} & \vec{z} \\ \vec{z} & \vec{z} & \vec{z} & \vec{z} \\ \vec{z} & \vec{z} & \vec{z} \\ \vec{z} & \vec{z} & \vec{z} & \vec{z} & \vec{z} \\ \vec{z} & \vec{z}$

$$\frac{d\vec{r}}{dt} = \frac{\mu\left(-\vec{E} + \mu r_H \vec{E} \times \vec{B} - \mu^2 r_H^2 \left(\vec{E} \cdot \vec{B}\right) \vec{B}\right)}{1 + \mu^2 r_H^2 |\vec{B}|^2}$$

• In case of perpendicular electric & magnetic fields, there is an effective deflection with an angle of

 $\tan(\theta_L) = r_H \mu B$

 $\mu(\vec{E})$: Electron mobility r_H : Electron Hall factor

Lorentz Angle

 $\mu(\vec{E})$: Electron mobility r_H : Electron Hall factor w: Pixel pitch d: Sensor thickness

- Effective Lorentz (deflection) angle: $tan(\theta_L) = r_H \mu B$
- For the optimal resolution:
 - Charge sharing between two rows and/or columns:
 - Charge carriers are deflected by one pixel pitch: $tan(\theta_L) = w/d$

Measurement Setup

DESY II Test Beam Facility CMS Pixel Telescope Analysis

Measurement Principle

- 2D scan:
 - Incidence angle (turn modules)
 - Magnetic field

• Find the track incidence angle resulting in the minimum horizontal cluster size for different magnetic fields

Measurement Principle

- 2D scan:
 - Incidence angle (turn modules)
 - Magnetic field

• Find the track incidence angle resulting in the minimum horizontal cluster size for different magnetic fields

DESY II Test Beam Facility [1]

- Free positron or electron beams created from bremsstrahlung
- Energy: 1 6 GeV
- Particle rate: < 50 kHz (energy dependent)
- Three beam lines available
- This measurement:
 - TB 21
 - 5.6 GeV positrons
 - ~ 1 mrad angular spread
 - 1.35 T dipole magnet

CMS Pixel Telescope

- CMS Pixel Telescope for use in the Test Beam:
 - 4 modules, 32 mm spacing
 - 19° tilt (optimal charge sharing, y), 0° or 27° turn (optimal charge sharing, x)
 - Cut out module handles for the reduction of material budget
 - Rotatable around y-axis (turn) and movable along x-axis
 - Use of non-magnetic materials

CMS Pixel Telescope

- CMS Pixel Telescope for use in the Test Beam:
 - 4 modules, 32 mm spacing
 - 19° tilt (optimal charge sharing, y), 0° or 27° turn (optimal charge sharing, x)
 - Cut out module handles for the reduction of material budget
 - Rotatable around y-axis (turn) and movable along x-axis
 - Use of non-magnetic materials
 - Isolation and ethanol cooling for last module

Nitrogen flushing

Coolant flow inside the module handle

Temperature / Humidity readout Page 13

CMS Pixel Telescope

- CMS Pixel Telescope for use in the Test Beam:
 - 4 modules, 32 mm spacing
 - 19° tilt (optimal charge sharing, y), 0° or 27° turn (optimal charge sharing, x)
 - Cut out module handles for the reduction of material budget
 - Rotatable around y-axis (turn) and movable along x-axis
 - Use of non-magnetic materials
 - Isolation and ethanol cooling for last module

Tested Modules

- Eff. Lorentz angle measured at the following conditions:
 - Unirradiated:
 - +20°C, 150 V
 - -14°C, 150 V
 - -14°C, 250 V
 - -14°C, 350 V
 - Irradiated:
 - -14°C, 200 V
 - -14°C, 400 V
 - -14°C, 600 V

Tested Modules

Thanks to T. Weiler et al. **@KIT for providing the** irradiated module!

18

16

14

12

10

0

<cluster charge>

Cluster Charge

100 200 300 400 500 600 700

- Eff. Lorentz angle measured ٠ at the following conditions:
 - Unirradiated:
 - +20°C, 150 V
 - -14°C, 150 V •
 - -14°C, 250 V
 - -14°C, 350 V
 - Irradiated:
 - -14°C, 200 V
 - -14°C, 400 V •
 - -14°C, 600 V •
- Irradiated Module:
 - Fluence: $\Phi_{eq} = 4 \times 10^{14} \text{ n/cm}^2$ (25 MeV protons @ KIT)

<rows/cluster>

1.9

1.8

1.7

1.6

1.5

- Tested and calibrated \rightarrow One ROC faulty
- Performed bias scan

1-dim cluster size

Bias voltage [V]

Measurement / Analysis

- Per measurement of the Lorentz Angle:
 - Perform runs at various rotation angles to find the angle with the minimal cluster size ...
 - ... for different magnetic fields
- Extraction of the Lorentz angle from data:
 - Particle incidence angle
 - Rotation of the telescope (determine from alignment)
 - Particle deflection in the magnetic field (measurement + simulation)
 - Projected cluster size
 - Select hits belonging to a reconstructed trajectory
 - Track finding via linear fit and fitting viaGeneral Broken Lines (GBL)
 - Plot cluster size vs. incidence angle for each magnetic field value

Measurement / Analysis

- Plot cluster size vs. incidence angle for each magnetic field value
- Perform fit to the data sets for each magnetic field

$$f(x) = p_0 + \sqrt{p_1^2 + p_2^2 (x - x_{min})^2}, \ x = \tan(\theta)$$

• The distance between the minima describes the effective Lorentz angle

Simulation

Allpix²

- Simulation of pixel detector responses for testing and the parametrization of ...
 - simulation models
 - detector/sensor models
 - experimental setups
- The workflow is configurable by the user via the configuration file
- Modules are executed sequentially, each performing one specific task
 - Triggered by messages received from other modules

Detector output distributions ٠

8 10 cluster size [px]

6

and many more...

- Detector output distributions
- Information on charge carrier drift

DESY. | 5th Annual MT Meeting, Jena | Paul Schütze | 06.03.2019

- Detector output distributions
- Information on charge carrier drift
- Information on digitization process

- Detector output distributions
- Information on charge carrier drift
- Information on digitization process
- Information on performance (resolution / efficiency) can be derived from higher level output, including the MC Truth information, including ROOT Trees, ASCII, LCIO, ...
 - Use Test Beam Analysis software for reconstructing Allpix² data!

Simulation – Lorentz angle

- Lorentz drift implemented in the charge carrier propagation
- Perform same scans as for the measurement for the unirradiated sample
 - No radiation damage model implemented yet
- Simplified setup:
 - One detector on a PCB
- Positron Beam: 1 TeV
- Electric field: linearly dependent on the sensor depth
- Rotation scans at 0 T and 1.335 T
- Extract the vertical cluster size from the control distributions

Results

Measurements and Simulations Extrapolation to CMS Operating Conditions

Results

- Example: Unirradiated, -14°C, 150 V Bias
- Measured eff. Lorentz Angle @ 1.335 T:

 $\theta_L(1.335 \,\mathrm{T}) = (7.59 \pm 0.10)^{\circ}$

- Linear dependency of $tan(\theta)$ on magnetic field
 - Expected from $tan(\theta_L) = r_H \mu B$
 - ➔ Only extract values @ 1.335 T
- No extrapolation to magnetic field @CMS possible due to the sensor tilt in the telescope (→ E and B not perpendicular, extrapolation via simulation)

Results – Bias voltage

- Increase in bias voltage
 - → Decrease in eff. Lorentz angle $tan(\theta_L) = r_H \mu B$
 - Mobility is a function of the electric field

 $\mu(E) = \frac{\mu_0}{\left(1 + \left(\frac{\mu_0 E}{v_{sat}}\right)^{\beta}\right)^{1/\beta}}$

Systematic ~ 10% deviation from simulation

 $\mu(\vec{E})$: Electron mobility r_H : Electron Hall factor v_{sat} : Saturation drift velocity β : Free parameter (≈ 1)

Results – Temperature

- Increase in temperature
 - → Decrease in eff. Lorentz angle $tan(\theta_L) = r_H \mu B$
 - Mobility is a function of temperature $\mu(T) \approx A \cdot T^{-2.42}$

 $\mu(\vec{E}): \text{ Electron mobility} \\ r_H: \text{ Electron Hall factor} \\ v_{sat}: \text{ Saturation drift velocity} \\ \beta: \text{ Free parameter } (\approx 1)$

Results – Radiation damage

- Increase in irradiation fluence
 - ➔ Increase in eff. Lorentz angle
 - Radiation damage leads to a non-linear electric field in the bulk
 - For similar voltages the eff. Lorentz angle is increased after irradiation

 $\mu(\vec{E})$: Electron mobility r_H : Electron Hall factor v_{sat} : Saturation drift velocity β : Free parameter (≈ 1)

Results – Radiation damage

- Increase in irradiation fluence
 - ➔ Increase in eff. Lorentz angle
 - Radiation damage leads to a non-linear electric field in the bulk
 - For similar voltages the eff. Lorentz angle is increased after irradiation

 $\mu(\vec{E}): \text{ Electron mobility} \\ r_H: \text{ Electron Hall factor} \\ v_{sat}: \text{ Saturation drift velocity} \\ \beta: \text{ Free parameter } (\approx 1)$

Extrapolation to CMS operating conditions

- Measured the Lorentz angle for a rotated sensor @ 1.335 T
- CMS Detector: Unrotated @ 3.8 T
- Linear extrapolation is not possible due to the the sensor rotation in the CMS Pixel Telescope
- \rightarrow Find conversion factor from simulations of both scenarios

• Caveat: Scaling factor calculated for unirrad. sensors and used also for irradiated samples

Extrapolation to CMS operating conditions

- Extrapolated measured eff. Lorentz angles to unrotated sensors @ 3.8 T
- Reminder: Optimal resolution around 19.3° (yellow line)
- Optimal resolution reached for unirradiated sensors around 200 V
- A high voltage is required to fully deplete irradiated sensors
 - Resolution is deteriorated

Conclusion

- CMS Pixel Module Telescope commissioned, with cooled detector operation
 - Realistic operational conditions and stable in temperature
 - Enables measurements with irradiated sensors
- Measurement of the effective Lorentz angle under various conditions
 - Measured the effects of temperature, bias voltage and irradiation
 - Lorentz angle in unirradiated sensor matches the requirement for optimal resolution
 - Optimal resolution cannot be maintained after reaching a certain irradiation fluence

CMS Module Telescope – Triggering and DAQ

- CMS Pixel Detector Telescope TDAQ:
 - External scintillator as particle trigger
 - Particles are only allowed during an 11 ns time window inside the 25 ns clock
 - 4 DTBs as DAQ boards
 - EUDAQ as DAQ software
 - Each plane runs as a producer
 - Raspberry Pi controller and NIM coincidence unit instead of TLU:
 - GPIO pins are connected to a NIM coincidence unit (GPIO → LEMO)
 - RPi Controller switches on (off) the triggers when all producers are ready (are still running)

CMS Module Telescope – Images

27° tilted module mounting

Module handle cut-outs

Magnetic field map – Big Red Magnet

Comparison to CMS Pixel Detector

- Overview over all scans performed at the original CMS Pixel Detector [3]
- Trend in eff. Lorentz Angle
 vs. integrated luminosity
- Similar to the test beam studies:
- Increase in irradiation fluence
 - ➔ Increase in eff. Lorentz angle

