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Outline

• DTS structure in PoF IV

• What has DTS achieved in the past years ?

• How has this helped “Matter“ ?

• What are the challenges for the next decade ?

• Glimpse at the Distributed Detector Lab 
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DTS in PoF-IV

New DTS structure emphasizes links within “Matter“ even better. “Projects“ within application fields of ST3 relate
to demonstrators and will be updated regularily.
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What has DTS achieved in the past years ?
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Achievements in sensors, ASICs and interconnects

• Monolithic HVCMOS sensors are ready for application in (particle physics) 
experiment

• Monolithic CMOS sensors are ready for application in photon science 

• Provided sophisticated high-Z sensors for hard X-rays

• Much enhanced application-specific integrated circuit (ASIC) design 
competence

• Acquired world-level competence in interconnect and packaging technology 
for highest integration density
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Monolithic HVCMOS sensors

HVCMOS advantages

• Very affordable, commercial process

• Much reduced material and thus good resolution

• Simplified detector system and module design

HVCMOS achievements

• Large-area, radiation-hard, fast and efficient sensors have been demonstrated

• HVCMOS is now a proven technology with a bright future

Hybrid vs. monolithic sensors
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Monolithic CMOS images for soft X-ray

Back-thinned CMOS advantages

• Unique sensitivity to soft X-rays

• “Stitching” enables large-area detectors

CMOS achievements

• Fast megapixel camera (and more pixels to come)

• Large dynamic range, low noise

• Will find wide application in photon science and 
possibly elsewhere

Unprecedented combination:
1408 × 1484 pixels
300 Hz frame rate
below 15 e- noise
sensitive to single photons
capable of coping with 
5·104 photons/pixel/frame

Diamond
Light

Source

Rutherford 
Appleton 

Lab / STFC

Elettra
Sinchrotrone

Trieste

Pohang
Accelerator
Laboratory
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Selected ASIC submissions
July 2018 
ATLASPIX2_TSI
Project: ATLAS

April 2018  
MuPix_TSI
Project: Mu3e

August 2016
ALPHA
Project: HVCMOS Pixel 

2016 
PhotonV2
Project: Multi-purpose ROC

November 2017
AGIPD0.6
Project: XFEL

March 2016
DSSC
Project: XFEL

November 2016
DSiPM
Project: Medical imaging, particle 
and astroparticle physics

November 2015 
Edet DCD
Project: EDETAugust 2015

SwitcherBGv2
Project: Belle II

2016 
JuMPAR
Project: JUNO

August 2018  
PhotonV2
Project: Multi-purpose ROC

Mid 2019
Gotthard-HR (with PSI)
Project: KALYPSO
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Achievements in advanced materials and engineering techniques

The best sensors and ASICs do not yet make a functional detector 
system

• We build light-weight large (CF) support structures

• We design cutting-edge thermo-mechanical-electrical modules and 
staves

• We have made much progress in automated assembly methods

• All this requires world-level competence in advanced materials, 
simulations and innovative engineering techniques
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DTS achievements in data acquisition

• Pioneering silicon photonics in detector instrumentation. Goal: Tb/s on one fiber

• Accelerating scientific computing by orders of magnitudes with GPUs

• Word-level competence in read-out of many-pixel superconducting sensors

• Providing a versatile  μTCA DAQ platform

• Creating strong competence in very high-end trigger and data acquisition systems

• Modular smart scientific camera platform (UFO camera) for photon scienceD
A
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DTS DAQ platform: components & features

FPGA Features
• Fast parallel preprocessing
• x Gb/s transceivers
• High flexibility

Micro TCA / AMC Features 
• High-performance digital systems
• Scalable
• Communication fabric
• Hot swap, in-built diagnostics

HGF AMCMicro TCA for physicsUFO DAQ Framework Onboard FPGA

Communication Features
• PCIe, Ethernet

UFO DAQ Framework

Configuration layer
• Scale communication
• Scale computation
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Silicon photonic chips

2.4 × 4.9 mm² 10 × 10 mm² 9.3 × 9.3 mm²

2013 2015 2018

• Started from scratch
• Photonic chip design is challenging: few comprehensive tools, few standard processes
• Many functional designs
• Innovative and world-best features
• Compact WDM systems
• Major progress in developing

design and simulation tools  

Design: Opsis, IPQ, IPE
Fab.: IME

Design: IPE
Fab.: IMS-Chips, Stuttgart

Design: IPE
Fab.: IMS-Chips, Stuttgart
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Silicon photonic chips

2.4 × 4.9 mm² 10 × 10 mm² 9.3 × 9.3 mm²

2013 2015 2018

Nickel fragments at
X-ray at KIT

Highest measured radiation 
hardness of pn-modulators

Fast modulators and
excellent (de-)multiplexers

All-silicon monolithically 
integrated WDM systems
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• 40 Gb/s demonstrator near completion

• Concept allows scaling to 5 Tb/s on one fiber

• Huge scope for improvements (e.g. monolithically integrated Ge 
photodiodes, higher modulation formats for higher rate, etc.)

• “Holy grail” could be monolithic integration of sensors, ASICs, 
photonics

Data transmission status and vision

fiber-chip-coupling 
with angle-polished fibers

miniaturized drivers
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How has this helped “Matter“ ?
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Detector systems for photon science 

Percival P2M detectorAGIPD detector for XFEL

1408 x 1484 pixels
300 Hz frame rate
< 15 e- noise
Dynamic range from 
single photons to 5·104 

photons/pixel/frame

Large high-Z sensors
Double-Hexa GaAs

Spin-off company
X-Spectrum

Resolved structure of 
CTX-M-14 β-lactamase
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T. van de Kamp, KIT

Online data processing – tomography
Ultrafast  4D X-ray tomography

3D - Ultrasound computer tomography
for breast cancer diagnosis

Modular programmable scientific camera 
in operation at PETRA III P07

Integration of GPU 
computing in DAQ systems
enabled online reconstruction

Grating-based phase contrast X-ray tomography

Thousands of  samples
Semi-automatic segmentation

High throughput X-ray tomography

Nature Communications  9, 3325 (2018), Rendering: Th. van de Kamp, KIT
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Particle and heavy-ion physics
Readout ASICs for Belle IIRadiation-hard sensors for

LHC upgrades
Automated module

assembly
Flip-chip processes for CMS 

pixel bare modules

ALICE TPC-U readout chambersTAB-bonding of CBM microcables to silicon sensors
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Particle and heavy-ion physics
CMS high-luminosity track triggerCMS silicon endcap integration

Quench detectionCommercial artificial
diamonds

Radiative Electron Capture: Xe54+ + H2
@ 31 MeV/u

H2

Digital silicon data acquisition
systemTPC in DESY test beam

Augsburg Diamond Technology GmbH
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Single-shot beam diagnostics 
KALYPSO line camera for electro-optical modulation 

KAPTURE ultrafast continuous sampling

8 channels with programmable
ps delays

LGAD sensor for photon science

Gotthard-HR-10MHz ASIC - UMC 110 nm technology

fs time 
resolution

Applications of KAPTURE & KALYPSO

32 strips at 50 µm pitch
Enable shutter-less 
measurements beyond 
200 MHz
Charge collection time:  
< 3 ns
Built-in gain: ~10-30

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjrl8_DxuTRAhWLExoKHUpzCbIQjRwIBQ&url=http://www.hpc-ch.org/psi-paul-scherrer-institut/psi-logo/&psig=AFQjCNEDFhjXpwoyzDTeIkk20mfaprBW0w&ust=1485682980414021
https://www.google.it/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjKqpHUxuTRAhVGcBoKHRhqB0YQjRwIBw&url=https://commons.wikimedia.org/wiki/File:Logo_KIT.svg&psig=AFQjCNGArGFypXI91ZWFPJLupfhQqTO6zw&ust=1485683014105366
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What are the challenges for the next decade and PoF IV? 

• The citius-altius-fortius challenge

• The ultimate-resolution, highest-efficiency challenge

• The complexity challenge

Experimental set-up at P07 beamline
at PETRA III
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Citius, altius, fortius

• Ever more pixels and ever larger detector area
camera systems with tens of millions of pixels in photon science
~500 million pixel/strip systems in particle physics

• Pixel number, resolution and frame rate all increase
1- 1000 million pixels
1-14 bit resolution
kHz – GHz frame rates

• Need to zero-suppress, compress, filter and process these data on and off the detector
 smart ASICs on detector
 capable data transmission of >> Terabit/second
 powerfull trigger, data processing, visualisation and management systems

CMS inner tracker for high-luminosity upgrade

Highflex board version 1

imply data streams of up to 100 Tb/s
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So far commercial nanoelectronics has been working for us

http://www.nature.com/nphoton/journal/v7/n5/full/nphoton.2013.94.html

Exponential progress with time

 Single fiber bandwidth: 10x every 4 years
 Processor transistor count: 4x every 3 years
 Memory size: 2x every 3 years

Transmission capacity in optical fibers

The times they are a-changing !
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From 3D to 4D tracking: a paradigm change

• We can distinguish different vertices, if they are not overlapping

• Just imagine we could precisely measure time as well!

• Timing would allow much better separation of overlapping events and offer great physics benefits

~200 collision vertices in 30 
cm at high-luminosity LHC
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4D tracking would also revolutionize track fitting

Can this be realized? 

Z- Vertex distributionprotons protons

Courtesy of Nicola Cartiglia (INFN Torino) 
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LGAD: Low-Gain Avalanche Detector

• LGADs combine position location of ~10 μm with ultra-fast timing
resolution of ~10 ps

• How do they work?
Start with a thin sensor for fast charge collection, 
compensate low signal and corresponding large jitter by internal 
signal amplification through an avalanche

• LGAD have the potential of replacing standard silicon sensors in 
almost every application

• Gain of LGADs is ~ 10 - 20

• Jitter of 50 µm thin sensors is > 12 ps
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High-performance deep machine-learning 

• Processing large data volumes in real-time by artificial intelligence algorithms will be a game changer

• Using heterogeneous FPGA-GPU platforms to combine the strengths of both technologies

Data 
source

Fast feedback to experiment 
based on machine-learning

GPU cluster

heterogeneous

GPU: floating-point and large 
processing capabilities, easy to 
program, etc. 

FPGA: Low-latency, customized 
designs, high-perfomance memories 
resources, many interfaces,  broader 
flexibility, etc. 

http://www.google.it/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2h8ye1qzZAhUE-6QKHQokBGgQjRwIBw&url=http://www.nvidia.it/object/tesla-server-gpus-it.html&psig=AOvVaw2-AoylcJi9sN_FseqSGePv&ust=1518947417205782
http://www.google.it/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi2h8ye1qzZAhUE-6QKHQokBGgQjRwIBw&url=http://www.nvidia.it/object/tesla-server-gpus-it.html&psig=AOvVaw2-AoylcJi9sN_FseqSGePv&ust=1518947417205782
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Mastering the ultimate-resolution challenge

Imaging bio-systems 

Soft X-rays

Neutrino mass

keV X-rays and electrons

Dark Matter searches

eV photons

Molecular dynamics

Mega pixels

Good time
resolution

~ keV electrons
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Why DDL? 

• We have seen that there are huge challenges and opportunities

• High-tech solutions demand high-tech infrastructure

• Need to provide custom, flexible and fast solutions for a diverse, broad and innovative 
science community
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Distributed Detector Lab (DDL)

• Distributed infrastructure, competence center and 
hothouse of technology

• Partners from universities, Leibniz, MPG and PTB

• DDL will provide key technologies to “Matter” and 
university partners

• Application to the Helmholtz large-scale investment 
fund (> 15 M€)

DDL has been strongly endorsed in all center evaluations.
We will follow up with a full proposal for PoF-IV strategic evaluation

Conceptual view of a possible DDL implementation. 
Preliminary
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Key elements of DDL 
Post-processing of silicon sensors Fabrication of superconducting 

sensors 
Preparation and 3D structuring of bulk 

semiconductor and high-Z sensors
Interconnect and packaging 

technologies 

Silicon photonics characterization Test beam infrastructures Competence centers

Application-specific electronics 
(ASICs)

Cryogenic DAQ laboratory 

Massive parallel processing 
(FPGA + GPU)

System engineering 
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Summary

• DTS has been extremely active in the past few years

• Could only show a fraction of what we do (sorry!)

• DTS technology has proven to boost „Matter“ science

• PoF-IV is a great opportunity to be even better

• For one, the installation of the Distributed Detector Lab would strongly benefit “Matter“ 
science for decades to come
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