HELMHOLTZ spitzenforschung für grosse herausforderungen

Status DT\$

Marc Weber

MT Annual Meeting March 2019, Jena

Outline

• DTS structure in PoF IV

• What has DTS achieved in the past years ?

• How has this helped "Matter" ?

• What are the challenges for the next decade ?

MT Annual Meeting 2018, HZB

• Glimpse at the *Distributed Detector Lab*

DTS in PoF-IV

New DTS structure emphasizes links within "Matter" even better. "Projects" within application fields of ST3 relate to demonstrators and will be updated regularily.

What has DTS achieved in the past years ?

Achievements in sensors, ASICs and interconnects

- Monolithic HVCMOS sensors are ready for application in (particle physics) experiment
- Monolithic CMOS sensors are ready for application in photon science
- Provided sophisticated high-Z sensors for hard X-rays
- Much enhanced application-specific integrated circuit (ASIC) design competence
- Acquired world-level competence in interconnect and packaging technology for highest integration density

Monolithic HVCMOS sensors

HVCMOS advantages

- Very affordable, commercial process
- Much reduced material and thus good resolution
- Simplified detector system and module design

Hybrid vs. monolithic sensors

HVCMOS achievements

- Large-area, radiation-hard, fast and efficient sensors have been demonstrated
- HVCMOS is now a proven technology with a bright future

Monolithic CMOS images for soft X-ray

Back-thinned CMOS advantages

- Unique sensitivity to soft X-rays
- "Stitching" enables large-area detectors

CMOS achievements

- Fast megapixel camera (and more pixels to come)
- Large dynamic range, low noise
- Will find wide application in photon science and possibly elsewhere

Unprecedented combination:

sensitive to single photons

5-10⁴ photons/pixel/frame

capable of coping with

1408 × 1484 pixels

300 Hz frame rate

below 15 e⁻ noise

P⁻RCIVAL

144

1000

Marc Weber

Selected ASIC submissions

July 2018 *ATLASPIX2_TSI* Project: ATLAS

April 2018 *MuPix_TSI* Project: Mu3e

MATTER AND

August 2018 **PhotonV2** Project: Multi-purpose ROC

Mid 2019 *Gotthard-HR (with PSI)* Project: KALYPSO August 2015 SwitcherBGv2 Project: Belle II

November 2015 *Edet DCD* Project: EDET

November 2016 **DSiPM** Project: Medical imaging, particle and astroparticle physics

2016 *PhotonV2* Project: Multi-purpose ROC

2016 JuMPAR Project: JUNO

August 2016 **ALPHA** Project: HVCMOS Pixel

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Achievements in advanced materials and engineering techniques

The best sensors and ASICs do not yet make a functional detector system

- We build light-weight large (CF) support structures
- We design cutting-edge thermo-mechanical-electrical modules and staves
- We have made much progress in automated assembly methods
- All this requires world-level competence in advanced materials, simulations and innovative engineering techniques

DTS achievements in data acquisition

- Pioneering silicon photonics in detector instrumentation. Goal: Tb/s on one fiber
- Accelerating scientific computing by orders of magnitudes with GPUs
- Word-level competence in read-out of many-pixel superconducting sensors

- Providing a versatile µTCA DAQ platform
- Creating strong competence in very high-end trigger and data acquisition systems
- Modular smart scientific camera platform (UFO camera) for photon science

thermal bath

DAQ Platform

DTS DAQ platform: components & features

FPGA Features

- Fast parallel preprocessing
- x Gb/s transceivers
- High flexibility

Micro TCA / AMC Features

- High-performance digital systems
- Scalable
- Communication fabric
- Hot swap, in-built diagnostics

Communication Features

• PCIe, Ethernet

UFO DAQ Framework

Configuration layer

- Scale communication
- Scale computation

Silicon photonic chips

- Started from scratch
- Photonic chip design is challenging: few comprehensive tools, few standard processes
- Many functional designs
- Innovative and world-best features
- Compact WDM systems
- Major progress in developing design and simulation tools

	Design: Opsis, IPQ, IPE Fab:: IME
2013	

 $2.4\times4.9\ mm^2$

 $10\times 10\ mm^2$

 $9.3\times9.3\ mm^2$

Silicon photonic chips

Highest measured radiation hardness of pn-modulators

 $2.4\times4.9\ mm^2$

Fast modulators and excellent (de-)multiplexers

 $10\times 10\ mm^2$

All-silicon monolithically integrated WDM systems

HELMHOLTZ

SPITZENFORSCHUNG FUR GROSSE HERAUSFORDERUNGEN

 $9.3\times9.3\ mm^2$

MATTER AND

Data transmission status and vision

- 40 Gb/s demonstrator near completion
- Concept allows scaling to **5 Tb/s** on one fiber

- Huge scope for improvements (e.g. monolithically integrated Ge photodiodes, higher modulation formats for higher rate, etc.)
- "Holy grail" could be monolithic integration of sensors, ASICs, photonics

fiber-chip-coupling with angle-polished fibers

miniaturized drivers

How has this helped "Matter" ?

Detector systems for photon science

Resolved structure of CTX-M-14 β-lactamase

Marc Weber

Online data processing – tomography

High throughput X-ray tomography

Nature Communications 9, 3325 (2018), Rendering: Th. van de Kamp, KIT

Grating-based phase contrast X-ray tomography

Modular programmable scientific camera in operation at PETRA III P07

Ultrafast 4D X-ray tomography

3D - Ultrasound computer tomography for breast cancer diagnosis

Particle and heavy-ion physics

Flip-chip processes for CMS pixel bare modules

TAB-bonding of CBM microcables to silicon sensors

ALICE TPC-U readout chambers

Particle and heavy-ion physics

Radiative Electron Capture: Xe⁵⁴⁺ + H₂ @ 31 MeV/u

CMS high-luminosity track trigger

CMS silicon endcap integration

TPC in DESY test beam

Commercial artificial diamonds

Quench detection

GROSSE HERAUSFORDERUNGEN

Single-shot beam diagnostics

LGAD sensor for photon science

32 strips at 50 µm pitch Enable shutter-less measurements beyond 200 MHz Charge collection time: < 3 ns Built-in gain: ~10-30

KALYPSO line camera for electro-optical modulation

KAPTURE ultrafast continuous sampling

Applications of KAPTURE & KALYPSO

What are the challenges for the next decade and PoF IV?

• The citius-altius-fortius challenge

• The ultimate-resolution, highest-efficiency challenge

• The complexity challenge

Experimental set-up at P07 beamline at PETRA III

Citius, altius, fortius

 Ever more pixels and ever larger detector area camera systems with tens of millions of pixels in photon science ~500 million pixel/strip systems in particle physics

• Pixel number, resolution and frame rate all increase

1- 1000 million pixels1-14 bit resolutionkHz – GHz frame rates

imply data streams of up to 100 Tb/s

CMS inner tracker for high-luminosity upgrade

- Need to zero-suppress, compress, filter and process these data on and off the detector
 → smart ASICs on detector
 Instant ASICs on detector
 - \rightarrow canable data transmission of >> Toral
 - \rightarrow capable data transmission of >> Terabit/second
 - \rightarrow powerfull trigger, data processing, visualisation and management systems

Highflex board version 1

Sensors – a huge market Applications and global market forecast 2023*

*) Source: Yole Status of the MEMS Industry Report 2018

Sensors – The heart of multiple applications and a global billion-dollar market

23

Automotive Electronics | Dr. Udo Gomez | 2018-11-06

© Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH OLTZ

So far commercial nanoelectronics has been working for us

Moore's Law – The number of transistors on integrated circuit chips (1971-2016) Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Transmission capacity in optical fibers

http://www.nature.com/nphoton/journal/v7/n5/full/nphoton.2013.94.html

Exponential progress with time

- Single fiber bandwidth: 10x every 4 years
- Processor transistor count: 4x every 3 years
- Memory size: 2x every 3 years

The times they are a-changing !

From 3D to 4D tracking: a paradigm change

• We can distinguish different vertices, if they are not overlapping

~200 collision vertices in 30 cm at high-luminosity LHC

- Just imagine we could precisely measure time as well!
- Timing would allow much better separation of overlapping events and offer great physics benefits

4D tracking would also revolutionize track fitting

LGAD: Low-Gain Avalanche Detector

- LGADs combine position location of ~10 µm with ultra-fast timing resolution of ~10 ps
- How do they work?

Start with a thin sensor for fast charge collection, compensate low signal and corresponding large jitter by internal signal amplification through an avalanche

- LGAD have the potential of replacing standard silicon sensors in almost every application
- Gain of LGADs is ~ 10 20
- Jitter of 50 µm thin sensors is > 12 ps

High-performance deep machine-learning

- Processing large data volumes in real-time by artificial intelligence algorithms will be a game changer
- Using heterogeneous FPGA-GPU platforms to combine the strengths of both technologies

Mastering the ultimate-resolution challenge

Marc Weber

Why DDL?

• We have seen that there are huge challenges and opportunities

• High-tech solutions demand high-tech infrastructure

 Need to provide custom, flexible and fast solutions for a diverse, broad and innovative science community

Distributed Detector Lab (DDL)

- Distributed infrastructure, competence center and hothouse of technology
- Partners from universities, Leibniz, MPG and PTB
- DDL will provide key technologies to "Matter" and university partners
- Application to the Helmholtz large-scale investment fund (> 15 M€)

Conceptual view of a possible DDL implementation. Preliminary

DDL has been strongly endorsed in all center evaluations. We will follow up with a full proposal for PoF-IV strategic evaluation

Key elements of DDL

Cryogenic DAQ laboratory

Silicon photonics characterization

Test beam infrastructures

Competence centers

Application-specific electronics (ASICs)

Massive parallel processing (FPGA + GPU)

System engineering

Summary

- DTS has been extremely active in the past few years
- Could only show a fraction of what we do (sorry!)

• DTS technology has proven to boost "Matter" science

• PoF-IV is a great opportunity to be even better

• For one, the installation of the Distributed Detector Lab would strongly benefit "Matter" science for decades to come

