DAQ System for Energy Dispersive Detectors

for X- and gamma-rays based on the MicroTCA.4 standard

Jan Timm Workshop on beamline instrumentation for scientists and engineers Hamburg, 9th Oct. 2018

Moving Pulse Shape Trigger

02 Hardware, Firmware and Software

- Firmware and Software
- Qt based GUI

03 First Results

04 Summary and Outlook

highly simplified model:

the deposited energy is proportional to the hight change of the signal

- Cadmium (Zinc) Telluride (Cd(Zn)Te)
- Silicon Drift Detectors (SDD)
- Lithium-drifted Silicon (Si(Li))
- High Purity Germanium (HP-Ge)
- (Scintillator Detectors)
- \Rightarrow Different Output Levels, new µRTM

highly simplified model:

the deposited energy is proportional to the hight change of the signal

- Cadmium (Zinc) Telluride (Cd(Zn)Te)
- Silicon Drift Detectors (SDD)
- Lithium-drifted Silicon (Si(Li))
- High Purity Germanium (HP-Ge)
- (Scintillator Detectors)
- \Rightarrow Different Output Levels, new μ RTM

highly simplified model:

the deposited energy is proportional to the hight change of the signal

- Cadmium (Zinc) Telluride (Cd(Zn)Te)
- Silicon Drift Detectors (SDD)
- Lithium-drifted Silicon (Si(Li))
- High Purity Germanium (HP-Ge)
- (Scintillator Detectors)
- \Rightarrow Different Output Levels, new µRTM

highly simplified model:

the deposited energy is proportional to the hight change of the signal

- Cadmium (Zinc) Telluride (Cd(Zn)Te)
- Silicon Drift Detectors (SDD)
- Lithium-drifted Silicon (Si(Li))
- High Purity Germanium (HP-Ge)
- (Scintillator Detectors)
- \Rightarrow Different Output Levels, new µRTM

highly simplified model:

the deposited energy is proportional to the hight change of the signal

- Cadmium (Zinc) Telluride (Cd(Zn)Te)
- Silicon Drift Detectors (SDD)
- Lithium-drifted Silicon (Si(Li))
- High Purity Germanium (HP-Ge)
- (Scintillator Detectors)
- \Rightarrow Different Output Levels, new µRTM

highly simplified model:

the deposited energy is proportional to the hight change of the signal

Detector types

- Cadmium (Zinc) Telluride (Cd(Zn)Te)
- Silicon Drift Detectors (SDD)
- Lithium-drifted Silicon (Si(Li))
- High Purity Germanium (HP-Ge)
- (Scintillator Detectors)
- \Rightarrow Different Output Levels, new µRTM

Detecting single photons

pulse form

 $\propto E_{\sim}$

1500 2000 2500

- Energy
- Time
- (Interaction depth)
- (Radiation type)

 $E \propto f'(t_d) = ma_{c,d} - ma_{a,b}$

 $E \propto f'(t_d) = ma_{c,d} - ma_{a,b}$

 $E \propto f'(t_d) = ma_{c,d} - ma_{a,b}$

Trigger on falling edge of "2nd derivative"

with the condition that it was for the duration of two windows and one gap above zero.

$$E \propto f'(t_d) = ma_{c,d} - ma_{a,b}$$

- Precise timing (E independent)
- High energy resolution (not the maximum)
- Low threshold
- FIR like filter: noise suppression and clean data
- High count rates

Realized in VHDL

Hardware

SIS8300-L and DRTM-AMP10

SIS8300-L by Struck

- 10 Channels, 125 MS/s, 16-bit ADC
- PCle, 4 lane
- 4 x 4 GBit DDR3
- Virtex 6 FPGA

DRTM-AMP10 by DESY-MSK

- Adjustable amplification
- Control via SPI interface
- AC and DC coupling
- 50 Ω and 1k Ω
- GPIOs (gate, trigger, ...)

Hardware

SIS8300-L and DRTM-AMP10

SIS8900

- LEMO 00, 50 Ω
- -1 V to 1 V input range
- RJ45 Digital I/O

SIS8300-L by Struck

- 10 Channels, 125 MS/s, 16-bit ADC
- PCle, 4 lane
- 4 x 4 GBit DDR3
- Virtex 6 FPGA

DRTM-AMP10 by DESY-MSK

- Adjustable amplification
- Control via SPI interface
- AC and DC coupling
- 50 Ω and 1k Ω
- GPIOs (gate, trigger, ...)

Implementation in Firmware

Firmware Application and Software Development Steps

MSK Firmware Framework

- Separate board and application logic
- Reuse already done work
- Simple updates and bug fixes
- Same application on different hardware

ChimeraTK

- DevicesAccess library
- ApplicationCore
- Bindings to DOOCs, EPICS, (TANGO), ...

Implementation in Firmware

Firmware Application and Software Development Steps

MSK Firmware Framework

- Separate board and application logic
- Reuse already done work
- Simple updates and bug fixes
- Same application on different hardware

ChimeraTK

- DevicesAccess library
- ApplicationCore
- Bindings to DOOCs, EPICS, (TANGO), ...

Software for Gamma Application

- New driver (+ fast DMA access)
- Qt based GUI
 - Set/get all Parameters
 - Simulate parameter changes
 on real data
 - Data acquisition
 - Various data structures:
 - Histogram
 - RIO
 - Event data (time, energies, samples (8 up to 2048), ...)
 - ROOT, HDF5, raw, ASCII

Qt based GUI

opened device: /dev/llrfadcs9 BOARD0 WORD FIRMWARE: 0

First Results with a Pulse Generator

BNC DB-2 and with SIS8300L, SIS8300 and DRTM-AMP10, old Vortex

First Results with a Pulse Generator

BNC DB-2 and with SIS8300L, SIS8300 and DRTM-AMP10, old Vortex

DESY. | DAQ System for Energy Dispersive Detectors | Timm, 9th Oct. 2018

First Results with a Pulse Generator

BNC DB-2 and with SIS8300L, SIS8300 and DRTM-AMP10, old Vortex

DESY. | DAQ System for Energy Dispersive Detectors | Timm, 9th Oct. 2018

DAQ System for Energy Dispersive Detectors

Summary

- Moving pulse shape trigger on FPGA
 - Precise timing information and high energy resolution at high count rates
 - Low threshold
 - Noise suppression and clean data
 - No dead/conversion time, only limited by pile up
- Implemented in SIS8300-L2 and tested with DRTM-AMP10
- Adjustable via software for different detector types
- Qt based GUI for data acquisition, parameter adjustment and debugging

DAQ System for Energy Dispersive Detectors

Summary

- Moving pulse shape trigger on FPGA
 - Precise timing information and high energy resolution at high count rates
 - Low threshold
 - Noise suppression and clean data
 - No dead/conversion time, only limited by pile up
- Implemented in SIS8300-L2 and tested with DRTM-AMP10
- Adjustable via software for different detector types
- Qt based GUI for data acquisition, parameter adjustment and debugging

- First tests with Vortex, Amptek, Ortec
- First tests with detectors at count rates above 1.8 · 10⁶ cps
- First test with Germanium 100 Pixel
 Detector

Outlook

- Fluorescence Mapping etc.
- Synchronization with PETRA III Bunches
- Various operation modes
 - Histogram
 - Raw samples
 - Reduced Data
 - (Full Mode)
- Tango Server, EPICS Record...

Thanks To

Martin Tolkiehn (P24), Hans-Thomas Duhme, Michael Fenner, Frank Ludwig, Holger Schlarb (MSK) Struck Innovative Systeme GmbH

and thank you for your attention.

Jan Timm jan.horst.karl.timm@desy.de +49 40 8998-1623