T4.2 report

Data Management for extreme scale computing

Oliver Keeble on behalf of T4.2 participants

T4.2: "Smart Caching"

X Goal: maximise the accessibility of data to clients while minimising global infrastructure costs.

INFN: XCache

- X National Cache Federation
 - - ··· → Currently 2 sites
 - Used by sites without local data
 - - ···→ metrics being collected
 - - ··· → increase scale
- X Automated Standalone Deployment
 - → DODAS automated deployment

 - → Demonstrated with 2k CMS jobs on OpenTelekomCloud

INFN: HTTP(S) Cache

- X HTTP(S) caching solution based on nginx

 - Upstream endpoint selection based on VO information
- Client contacts nginx which either retrieves (miss) or serves (hit) the data
- ★ Cache operates with a service credential
 No delegation
- X Smarter caching algorithms may be contemplated

dCache

- Storage Events (notifications)
 - SSE driven notifications have been added to dCache
 - → Adding storage-event support in storage systems can bring numerous benefits
 - Smart Caching
 - remote parties can learn about changes within a storage system
 - A cache could take pre-emptive action
 - → deleting cached data if the parent items are deleted
 - fetching "interesting" data before the client makes a request
 - Storage adoption
 - Running a remote storage system as part of a larger custodial system
 - This would allow the remote system to be accessed independently of the custodial system
 - Orchestrator integration, Federator integration ...
- Locality information [forthcoming]
 - → Do "data lakes" need a data locality interface?
 - The use-case: a dataset is stored in "the data lake". The client wants to know to which compute centre(s) it should submit its work to reduce the access latency.
- Storage adoption [forthcoming]

CERN: EOS XCache

- X Integration of XCache as a caching solution for EOS
 - Reference scenario: XCache deployed at a remote centre to accelerate its local CPU. Front end is HTTP/xroot, backend communication is xroot.
 - → As EOS is based on XRootD, this offers a number of opportunities for closer integration of the two systems
 - Identity forwarding plugin created whereby the cache can identify on whose behalf it is acting
 - Upstream storage can respond appropriately
 - Full system deployed on XDC testbed and integrated with VOMS
- X Evaluation of further developments
 - write support
 - ··· → would be write-through
 - → ACL synchronisation

CERN: EOS Storage Adoption

- X EOS can now adopt
 - - ···→ Through an S3 or a WebDAV interface
 - → Demonstrated with dCache/WebDAV
 - - Data already present on a system described above can be incorporated into EOS
 - ··· → It can then be replicated, moved, managed in the usual way
 - Can even be removed from the original storage while preserving access
- X At present, EOS takes over management of the storage system
 - Independent access is... possible but highly discouraged.
 - This can be addressed through notifications