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Prologue
Q: How do we simplify the problem of unifying gravity with a quantum theory
of gauge fields and matter? A: add symmetry

1. Add supersymmetry (SUSY)

– Symmetry Q : bosons↔ fermions, extends Poincaré

2. Add dimensions

– Classically, unifies GR with forces like EM (Kaluza-Klein, Einstein, ∼ 1921)
– Increased symmetry (larger Poincaré group), increased mathematical control

D > 11: No SUSY theories without massless spin > 2 fields (problematic)

D = 11: unique theory of pure supergravity (SUGRA)
– 32 Q’s (N = 1 SUSY)
– Theory of membranes in 11D, “M-theory”/“M(atrix) theory”
– Long thought alternative to string theory; 1995: dual to ST

D = 10, 32 Q’s (N = 2): 2 pure SUGRA theories: IIA, IIB (both ST’s)
W. Taylor Lessons from 6D for geometry, the landscape and matter 4 / 45
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Research program: follow the Venn diagram

Apparently consistent

gravitationally coupled

QFTs

G
Known macroscopic/low-E constraints:

Anomalies, sign conditions, . . .

HH
HY

String vacuum

constructions:

V

V = { known string constructions }
(IIA/IIB/heterotic/F-theory/. . . )��

��

For given dimension D, SUSY N :

• Identify G,V, theories x ∈ G \ V (“swampland”),⇒ new constraints/vacua

• Relate UV/string constraints to macroscopic physics

• If G = V , QG = string theory in D dimensions with N supersymmetries
W. Taylor Lessons from 6D for geometry, the landscape and matter 5 / 45
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Example: supergravity/string theory in 10 dimensions

IIA

SO(32) IIB

G1984V1984

E8 × E8

U(1)496

E8 × U(1)248

1984: Green-Schwarz anomaly cancellation

1985: Heterotic string discovered [Gross/Harvey/Martinec/Rohm]

2010: In 10D, string constraints = low-energy constraints [Adams/DeWolfe/WT]

G = V (at level of massless spectra)
W. Taylor Lessons from 6D for geometry, the landscape and matter 6 / 45
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Six dimensions: tractable but interesting

• Largest dimension with non-adjoint supersymmetric matter

• Strongly constrained from gravitational anomalies

• One big moduli space: connected branches w/ discrete labels

6D supergravity: field content (+ SUSY)

Gravity (metric gµν)
T antisymmetric tensor fields Bµν
G gauge symmetry (gauge bosons Aµ)
M matter fields (charged under G or not)

Example anomaly constraint: M − dim G = 273− T

Strong constraints on {consistent theories} = G
Kumar/Taylor, Kumar/Morrison/Taylor: T < 9⇒ finite NA G,M spectra

W. Taylor Lessons from 6D for geometry, the landscape and matter 7 / 45
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1. F-theory and Calabi-Yau manifolds

F-theory:

F-theory = dictionary: geometry↔ physics of gauge group + matter + SUGRA

• Gives a global picture of “landscape” of vacua

• Geometry: “elliptic” Calabi-Yau manifolds

• Gauge groups, matter encoded in singularities

W. Taylor Lessons from 6D for geometry, the landscape and matter 8 / 45
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Calabi-Yau threefolds: manifolds used in superstring compactification

physically:

• Ricci flat: Rµν = 0 (solve vacuum Einstein equations)

• Kähler manifolds (complex structure compatible with SUSY)

mathematically: trivial canonical class K = 0 (up to torsion)

Long studied by mathematicians and physicists

— Used in compactification of string theory: 10D→ 4D, 6D, . . .

Largest class of known Calabi-Yau threefolds: toric hypersurface CY3’s
Kreuzer/Skarke: Classified 473.8M reflexive 4D polytopes

Open Question:
Are there a finite number of topological types of Calabi-Yau threefolds?

W. Taylor Lessons from 6D for geometry, the landscape and matter 9 / 45
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Elliptic and genus one-fibered CY threefolds

An elliptic or genus one fibered CY3 X:
A torus (fiber) at each p ∈ B2
π : X → B2

Elliptic: ∃ section σ : B2 → X, πσ = Id

Elliptic Calabi-Yau threefold has Weierstrass model

y2 = x3 + fx + g, f , g ‘functions′on B2

Used for 6D F-theory construction (fiber τ = 10D axiodilaton)

Finite number of topological types of elliptic Calabi-Yau threefolds
[Grassi, Gross]

Constructive proof: (using principles of F-theory)
Bases B2: “blowup” points of Fm,P2 (Grassi);
Finite number of distinct strata in space of B2 W. models

W. Taylor Lessons from 6D for geometry, the landscape and matter 10 / 45
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Gauge groups and matter in F-theory

Gauge groups:

7-branes on curve (divisor) Si

→ gauge factor Gi

Singularity type: ordSi f , g in Weierstrass
(Kodaira classification)

For certain B2, G nontrivial ∀ moduli
(“non-Higgsable clusters”)

Matter:

Primarily encoded in singularities at complex codimension two loci
(e.g. Si ∩ Sj → bifundamental matter)

Matter singularities not fully classified: current research

W. Taylor Lessons from 6D for geometry, the landscape and matter 11 / 45
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2. Calabi-Yau threefold geometry

Primary new results on Calabi-Yau geometries

• Can systematically construct elliptic CY3’s
(w/ some remaining technical issues for explicit complete list)

•Most known CY3’s are elliptic!

•Mirror symmetry factorizes for many elliptic-elliptic pairs

W. Taylor Lessons from 6D for geometry, the landscape and matter 12 / 45
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Constructing and classifying elliptic CY3’s (Tools I):

Classification of 6D “Non-Higgsable Clusters” (NHC’s) [Morrison/WT]:
Combinations of curves of negative self-intersection→ force gauge groups

−m
(m = 3, 4, 5, 6, 7, 8, 12)

su(3), so(8), f4
e6, e7, e8

@
@
@�
�
�

-3

-2

g2 ⊕ su(2)

@
@
@

@
@
@

�
�
�

-3

-2

-2

g2 ⊕ su(2)

@
@
@

@
@
@

�
�
�

-2

-3

-2

su(2)⊕ so(7)⊕ su(2)

• Any other combo w/ ≤ −3⇒ non-Kodaira (4, 6) singularity
• Limits complexity of base

W. Taylor Lessons from 6D for geometry, the landscape and matter 13 / 45
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Constructing and classifying elliptic CY3’s (Tools II):

Toric geometry: simple combinatoric version of algebraic geometry

-
6

�
�	

-
6

�
�	

+1 +1

+1

+1

0

0
?
−1

⇒

P2 F1 = dP1

(blow up point)

Toric variety: characterized by toric divisors Di ↔ rays vi ∈ Zd

Anomalies + geometry:
Can construct topological Hodge numbers from base + G + matter

e.g. h1,1(X) = h1,1(B)+ rank G + 1

W. Taylor Lessons from 6D for geometry, the landscape and matter 14 / 45
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Classification of base surfaces B2: start with P2,Fm, blow up to get all bases B2

• 61,539 toric bases (some not strictly toric: -9, -10, -11 curves) [Morrison/WT]

Generic elliptic CY on toric bases

0 100 200 300 400 500
h110

100

200

300

400

500
h21

• All bases (including non-toric) for EF CY3 w/ h2,1(X) ≥ 150 [WT/Wang]

• For each B2, finite number of “tunings” of Weierstrass; increase G.

• Tunings on toric bases: all KS data w/ h1,1 ≥ 240 or h2,1 ≥ 240. [Huang/WT]
W. Taylor Lessons from 6D for geometry, the landscape and matter 15 / 45
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Toric hypersurface construction [Batyrev, Kreuzer/Skarke]

Anti-canonical class −K =
∑

i Di (never compact CY)

Anti-canonical hypersurface⇒ CY by adjunction

∇ polytope: convex hull of vertices vi

{monomials} ↔ lattice points in dual polytope ∇∗ = {w : w · v ≥ −1}

Batyrev: ∇ = ∇∗∗ reflexive↔ 1 interior point
↔ hypersurface CY generically smooth (avoids singularities)

∇,∆ describe mirror Calabi-Yau threefolds h1,1 ↔ h2,1

Symmetry in toric hypersurface construction early evidence for mirror
symmetry

W. Taylor Lessons from 6D for geometry, the landscape and matter 16 / 45
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Example: Batyrev for generic elliptic curve

∇ ∆

Gives general Weierstrass (“Tate form”) model for elliptic curve:

y2 + a1yx + a3y = x3 + a2x2 + a4x + a6

Completing square, cube→ standard (short) Weierstrass form

y2 = x3 + fx + g

W. Taylor Lessons from 6D for geometry, the landscape and matter 17 / 45
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Simple toric fibrations:

∇2 ⊂ ∇,∇2 reflexive

Only 16 reflexive ∇2’s (e.g. F-theory fibers:
[Braun, Braun/Grimm/Keitel, Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

F1 F2 F3 F4

· · ·

F10

· · ·

F16

−1 curve C = D(2)
i : satisfies −K · C = C · C + 2 = 1

All but F1 = P2,F2 = F0 = P1 × P1,F4 = F2 have −1 curves⇒ toric sections
W. Taylor Lessons from 6D for geometry, the landscape and matter 18 / 45
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Growing evidence: most known Calabi-Yau threefolds are elliptic or g1 fibered!
[Candelas/Constantin/Skarke, Gray/Haupt/Lukas, Anderson/Gao/Gray/Lee, . . . ]

Check explicitly for fibrations:
all KS polytopes giving CY w/ h1,1 ≥ 140 or h2,1 ≥ 140 [Huang/WT]

{1, 149}

{7, 143}

{140, 62}

{1,145}

0 100 200 300 400 500
0

100

200

300

400

500

h1,1

h2
,1

Only 4 (of 495515) lack genus one fibers:

(h1,1, h2,1) = (1, 149), (1, 145), (7, 143), (140, 62)

When h1,1 = 1, clearly no fiber (Shioda-Tate-Wazir)
W. Taylor Lessons from 6D for geometry, the landscape and matter 19 / 45
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Asymptotics at small h1,1:

Probability that a CY3 is not g1/elliptic fibered decreases
as 2−h1,1

for h1,1 > 1

h1,1 2 3 4 5 6 7
# without fiber∇2 23 91 256 562 872 1202

Total # 36 244 1197 4990 17101 50376
% 0.639 0.373 0.214 0.113 0.051 0.024

0 5 10 15 20 25 30
0.00

0.05

0.10

0.15

0.20
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0.30

0.35

0

5.0×106

1.0×107

1.5×107

2.0×107

2.5×107

3.0×107

3.5×107

1787.06

3.06857

h1,1	23 91
256

562

872

1202

5 10 15 20 25 30
0

500

1000
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No fiber polytope fraction

0.1 ·25-h1,1

Polytope Number

Estimated no fiber polytope number
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Why exponentially unlikely to not have fiber?

Theorem (Oguiso/Wilson):
A Calabi-Yau 3-fold X, X is genus one (or elliptically) fibered iff there exists a
divisor D ∈ H2(X,Q) that satisfies D3 = 0,D2 6= 0, and D · C ≥ 0 for all
algebraic curves C ⊂ X.

Assuming “random” data for triple intersection form Cijk,
how likely is this to occur?

Possible obstructions:

A) Number theoretic (no solution to Cijkdidjdk = 0 over integers)

B) Cone obstruction, no solution over reals when D ⊂ positive cone

Consider each in turn

W. Taylor Lessons from 6D for geometry, the landscape and matter 21 / 45
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Number theoretic obstructions

For example:
x3 + x2y + y3 + 2z3 + 4w3 = 0

has no solutions over the integers Z (or over Q); (Z2 obstruction)

Mordell (1937) identified homogeneous degree d polynomial in d2 variables
with obstruction

Subsequent conjectures: d2 is maximum number of variables with obstruction

Proven for d = 1, 2

Counterexample: quartic with 17 variables has obstruction!

Heath-Brown (1983): every non-singular cubic in ≥ 10 variables with rational
coefficients has nontrivial rational zero.

Also proven for general cubic in ≥ 16 variables

Upshot: no number-theoretic obstruction when h1,1(X) > 15 (likely 9)

W. Taylor Lessons from 6D for geometry, the landscape and matter 22 / 45
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Cone obstructions: apparently exponentially suppressed

Simple heuristic argument:

Assume cone has D =
∑

i diDi, di ≥ 0

Look for positive solution of cubic
∑

i,j,k Cijkdidjdk = 0

Proceed by induction:

First, check M = 2,
∑M

i,j,k Cijkdidjdk = 0
∼ cubic in two variables, has ≥ 1 real solution; 50% chance in cone

Add one variable: pick random other numbers in cone; probability solution in
last variable is positive: 1/2, . . .

⇒ suggests probability ≤∼ 2−h1,1
that no fiber exists

Very heuristic argument, but matches data!

W. Taylor Lessons from 6D for geometry, the landscape and matter 23 / 45
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Strong evidence: almost all known CY3’s have elliptic/g1 fibers

Supported by other recent work, particularly Anderson + Gray + collaborators

E.g. all CICY threefolds with h1,1 > 4 have g1/elliptic fibers
[Anderson, strings 2018 talk]

If most Calabi-Yau threefold are elliptic/g1 fibered
+ finite number of elliptic/g1 fibered CY threefolds
⇒ would prove finite number of CY threefolds!

Classification of elliptic/g1 CY threefolds⇒ CY3’s,
non-fibered threefolds ∼ special cases

Note: all elliptic CY’s connected by extremal transitions→∼ Reid’s fantasy?

W. Taylor Lessons from 6D for geometry, the landscape and matter 24 / 45



F-theory and Calabi-Yau Manifolds
Calabi-Yau threefold geometry

The F-theory landscape and the swampland
Matter and representations

Strong evidence: almost all known CY3’s have elliptic/g1 fibers

Supported by other recent work, particularly Anderson + Gray + collaborators

E.g. all CICY threefolds with h1,1 > 4 have g1/elliptic fibers
[Anderson, strings 2018 talk]

If most Calabi-Yau threefold are elliptic/g1 fibered
+ finite number of elliptic/g1 fibered CY threefolds
⇒ would prove finite number of CY threefolds!

Classification of elliptic/g1 CY threefolds⇒ CY3’s,
non-fibered threefolds ∼ special cases

Note: all elliptic CY’s connected by extremal transitions→∼ Reid’s fantasy?

W. Taylor Lessons from 6D for geometry, the landscape and matter 24 / 45



F-theory and Calabi-Yau Manifolds
Calabi-Yau threefold geometry

The F-theory landscape and the swampland
Matter and representations

Mirror symmetry

Mirror symmetry factorizes for many toric hypersurfaces!

If F = ∇2 ⊂ ∇ is a slice and F̃ = ∆2 ⊂ ∆ is also a slice
⇒Mirror symmetry factorizes

Simplest factorization:
Standard stacking on P2,3,1 ↔ Tate form Weierstrass model

Mirror of generic elliptic fibration over B = ef over B̃ (may be tuned):

B→ B̃ ∼ Σ(−6KB),∇2 = ∆2 = P2,3,1

(65k examples in KS database)

0 100 200 300 400 500
h110

100

200

300

400

500
h21
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Example: generic elliptic fibration on P2 (2, 272)

Hodge numbers (2, 272)

h1,1(B) = 1

G = 1

h1,1(X) = h1,1(B) + rk G + 1 = 2

h2,1(X) = 301 − 29h1,1(B) − dimMnh = 272

H-6, 12L

H-6, -6L H12, -6L

Hodge numbers (272, 2)
(toric rays: ~w ·~v ≥ −6, ∀~v ∈ ΣB, ~w primitive)

h1,1(B) = 106 + 3 = 109

G = E8
9 × F4

9 × (G2 × SU(2))18

h1,1(X) = h1,1(B) + rk G + 1 = 272

h2,1(X) = 301 − 29h1,1(B) + dim G − dimMnh = 2

W. Taylor Lessons from 6D for geometry, the landscape and matter 26 / 45
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Example: self-mirror generic elliptic fibration (251, 251)

H0, -1L

H-1, 6L H42, 6L

Toric self-intersections:
(0, 6,−12//− 11//− 12//− 12//− 12//− 12//− 12//− 12//− 12)

(// = (−1,−2,−2,−3,−1,−5,−1,−3,−2,−2,−1))

h1,1(B) = 97 + 1 = 98

G = E8
9 × F4

8 × (G2 × SU(2))16 (rank = 152)

h1,1(X) = h1,1(B) + rk G + 1 = 251
h2,1(X) = 301− 29h1,1(B) + dim G− dimMnh = 251

W. Taylor Lessons from 6D for geometry, the landscape and matter 27 / 45
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Factorized mirror symmetry: more general structures

• Also works for “tuned” Tate models↔ reduction on ∆

•Works for other fibers, bundle structures

e.g. B = P2,F = F2; base stacked over vertex: H = (4, 94)
B̃ ∼ −2KB, F̃ = F15; H = (94, 4)

(B̃ : (−3,−1,−4,−1,−4,−1,−3,−1,−4,−1,−4,−1,−3,−1,−4,−1,−4,−1))

B = P2

[mirror symmetry of fibers:
discussed in Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter]

W. Taylor Lessons from 6D for geometry, the landscape and matter 28 / 45
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ΔF2: vs
(F)= (1,0)

r B = P2
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Factorize mirror symmetry for CY fourfolds

Same story for fourfolds:

F = Fi → F̃ = F17−i,
B→ B̃ ∼ −nKB for vertex stacking,

Example: B = P3 standard stacking (F = P2,3,1 = F10)

Rays in B̃: primitive lattice points in tetrahedron:
w/vertices (-6, -6, -6), (18, -6, -6), (-6, 18, -6), (-6, -6, 18)

G = E34
8 × F96

4 × G256
2 × SU(2)384

• (Exponentially) many triangulations

• Note: common endpoint from random blow-up sequence [WT/Wang]
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F-theory and Calabi-Yau Manifolds
Calabi-Yau threefold geometry

The F-theory landscape and the swampland
Matter and representations

Factorize mirror symmetry for CY fourfolds

Same story for fourfolds:

F = Fi → F̃ = F17−i,
B→ B̃ ∼ −nKB for vertex stacking,

Example: B = P3 standard stacking (F = P2,3,1 = F10)

Rays in B̃: primitive lattice points in tetrahedron:
w/vertices (-6, -6, -6), (18, -6, -6), (-6, 18, -6), (-6, -6, 18)

G = E34
8 × F96

4 × G256
2 × SU(2)384

• (Exponentially) many triangulations

• Note: common endpoint from random blow-up sequence [WT/Wang]

W. Taylor Lessons from 6D for geometry, the landscape and matter 29 / 45



F-theory and Calabi-Yau Manifolds
Calabi-Yau threefold geometry

The F-theory landscape and the swampland
Matter and representations

3. The 6D F-theory landscape and the swampland

Primary results on 6D landscape

• F-theory provides global picture of 6D landscape

• Essentially one theory with many connected branches;
No potential→ one big moduli space

• Unbroken gauge symmetries, matter are generic features
(in 4D as well as 6D!)

• Generic structure:
Many group + matter “clusters” interacting only gravitationally
(suggestive for dark matter in 4D)

• F-theory geometry ties closely to 6D anomaly constraints

• Gauge groups, matter strongly constrained in F-theory
W. Taylor Lessons from 6D for geometry, the landscape and matter 30 / 45
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Global picture of 6D and 4D F-theory landscape:
Story parallel in many ways

– Compactify on elliptic Calabi-Yau fourfold, base B3 = complex threefold

– Empirical data suggest similar structure (though less complete for CY4’s)

4D theories significantly more subtle:
•Minimal models (Mori theory) more subtle
• Fluxes, superpotential, seven-brane dynamics not completely understood

e.g. T-branes [Cecotti/Cordova/Heckman/Vafa, Anderson/Heckman/Katz, . . .]

But evidence so far: moduli space of CY4 geometries parallel to CY3 story
W. Taylor Lessons from 6D for geometry, the landscape and matter 31 / 45
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Overview of 6D, 4D landscape

• Geometric gauge group dominated by E8,F4,G2, SU(2) factors
(may be broken by fluxes in 4D)
SU(5) for example requires fine tuning

•Many separate clusters, connected only by gravity (dark matter?)

Considering only toric threefold bases, many possibilities

Explicit constructions: ∼ 10755 bases [Halverson/Long/Sung]

Monte Carlo analysis: >∼ 103000 bases [WT/Wang]

These include (4, 6) codimension 2 SCFT sectors

W. Taylor Lessons from 6D for geometry, the landscape and matter 32 / 45
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Physics: F-theory flux vacua (w/ Y. Wang)

Can we identify the F-theory geometry with most flux vacua?

Conventional wisdom (Ashok-Denef-Douglas): ⇒ in regime h1,1 � h3,1

#vacua N(X) ∼ 100.9 h3,1(X)

# vacua N(X) ∼ 100.9 h3,1(X)

Mmax is elliptically fibered; B2 over P1. Dominates set of flux vacua?

N(Mmax) ∼ 10272,000 non-Higgsable Gmax = E9
8 × F8

4 × (G2 × SU(2))8

Circumstantial evidence:
∑

X 6=Mmax
N(X) < 10−3000N(Mmax)

W. Taylor Lessons from 6D for geometry, the landscape and matter 33 / 45
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Goal: Map the landscape and swampland for 6D N = 1 SUGRA

Apparently consistent

gravitationally coupled

QFTs in 6D

G

Anomalies, etc. strongly constrain G
H
HHY

6DN = 1
F-theory vacua:

V

Program: systematically analyze G for 6D N = 1 SUGRA
Find “swampland” of apparently consistent theories w/o F-theory realization

If x ∈ G \ V , must indicate one of

 a) new string construction: V∗ ⊃ V
b) new low-E constraint: G∗ ⊂ G
c) true stringy constraint V∗ ⊂ G∗

G∗ = V∗ ⇒ “String universality” True in 10D. Prove in 6D?
W. Taylor Lessons from 6D for geometry, the landscape and matter 34 / 45
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4. Matter and representations

F-theory only realizes restricted types of matter representations

• Certain matter fields are generic in a well-defined way
— other exotic matter fields realized through more complicated singularities
— still other matter representations may go beyond conventional F-theory
— other representations are simply disallowed

• Infinite swampland still for U(1) charges

•Many conclusions generalize to 4D
Standard model matter is generic if G = SU(3)× SU(2)× U(1)/Z6!

W. Taylor Lessons from 6D for geometry, the landscape and matter 35 / 45
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Generic matter

In 6D, we define generic matter as the set of matter representations that arise on
the moduli space branch of highest dimension, for a given gauge group and
anomaly coefficients

• Examples: U(1)→ generic matter q = 1, 2
SU(2)→ generic matter fundamental + adjoint

• For simple groups, SU(N)× U(1), etc., generic matter fields match anomaly
conditions, uniquely determined

• For groups with more factors (e.g. U(1)3), generic matter not unique

• Generic matter is produced by the simplest F-theory tunings, simplest
codimension two singularities given G

e.g. Tate tuning [Bershadsky et al., Katz/Morrison/Schafer-Nameki/Sully]

y2 + a1yx + a3y = x3 + a2x2 + a4x + a6

fix vanishing orders of an → SU(N) gives generic matter
W. Taylor Lessons from 6D for geometry, the landscape and matter 36 / 45
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Exotic SU(N) matter

Generic SU(N) matter: from Katz-Vafa rank 1 enhancement at codimension 2:
AN−1 → AN : ,→ DN :

Exotic matter types in conventional F-theory

: SU(6), SU(7), SU(8)

: SU(N)

: SU(2)

Organizing principle: 1 + 1
2 (a · b + b · b) =

∑
(gR = 1

12 (2CR + BR−AR)) [KPT]
(From anomalies; F-theory: arithmetic genus contribution of singular curve)

g > 0 realized by singularities over singular 7-branes
[Klevers/Morrison/Raghuram/WT]

Some possibility beyond conventional F-theory: SU(2) ?
T-branes? [Cvetic/Heckman/Lin]

Limited swampland
W. Taylor Lessons from 6D for geometry, the landscape and matter 39 / 45
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U(1) models with charges q1, q2, . . .

Compare, for nonabelian groups, T < 9:
— Finite number of anomaly-free spectra,
— Good fraction from F-theory, under relatively good control
— Some issues with exotic matter

U(1) anomaly conditions (a, b̃ anomaly coefficients for BRR,BFF)

−a · b̃ =
1
6

∑
q2

i

b̃ · b̃ =
1
3

∑
q4

i

For T = 0 models: very simple Diophantine equations

18b̃ =
∑

q2
i

3b̃2 =
∑

q4
i

W. Taylor Lessons from 6D for geometry, the landscape and matter 40 / 45
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Generic matter: T = 0, q = 1, 2

U(1) models:

b̃
(

24− b̃
)
× (±1) +

1
4

b̃
(

b̃− 6
)
× (±2)

where 6 ≤ b̃ ≤ 24, b̃ ∈ 2Z

Compare SU(2) models with fundamentals, ≥ 1 adjoint

2b(12− b)× +
1
2

(b− 1)(b− 2)×

• 1-1 match, SU(2)→ U(1) by Higgsing, b̃ = 2b

• All U(1) models from Morrison-Park

• All SU(2) models from simple Tate/UFD construction on degree b

⇒ T = 0, q = 1, 2 models have no swamp, F = {consistent}
W. Taylor Lessons from 6D for geometry, the landscape and matter 41 / 45
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Matching for larger q?

No! Exist infinite families of anomaly-free solutions.

54× (±q) + 54× (±r) + 54× (±(q + r)) , b̃ = 6
(
q2 + qr + r2) , q, r ∈ Z

Another family:

54× (±a) + 54× (±b) + 54× (±c) + 54× (±d) , b̃ = 12
(
m2 − mn + n2)2

a = m2 − 2mn ,

b = 2mn− n2 ,

c = m2 − n2 ,

d = 2
(
m2 − mn + n2) .

Asymptotics: b̃ ∼
∑

q2, b̃2 ∼
∑

q4 → O(b̃(m−4)/2) w/ m distinct q’s

Surprising: finite # from F-theory, finite nonabelian spectra
W. Taylor Lessons from 6D for geometry, the landscape and matter 42 / 45
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What is the largest U(1) charge in F-theory?

– Must be finite, since finite # F-theory models, elliptic CY3’s

– No U(1) analogue of Kodaira bound (−12a ≥ Nb for SU(N)) on anomaly
coefficient b̃.

Explicit Weierstrass models: only up to q = 4 [Raghuram]

Some suggestions: standard F-theory constructions bounded at q = 6

Indirect construction: [Raghuram/WT]

Tune Weierstrass SU(5)× SU(4) on genus 2 curve in F3,
matter content including (10, 4) + (5, 6) + (5, 4̄) hypermultiplets

Higgs on adjoint fields→ U(1)× U(1),
matter content including (3, 3) and (4, -3) charges

Higgs on (4, -3)→ charge q = 3q1 + 4q2 = 21

q = 21 largest known possible U(1) charge. Bigger possible?
W. Taylor Lessons from 6D for geometry, the landscape and matter 43 / 45
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Generic matter and 4D physics

• Dimension, anomaly arguments from 6D don’t work in 4D.
But generic F-theory constructions give same generic matter types!

• Standard model has non-generic matter for G = SU(3)× SU(2)× U(1)
But matter is generic for G = (SU(3)× SU(2)× U(1))/Z6!

W. Taylor Lessons from 6D for geometry, the landscape and matter 44 / 45
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Summary

•We have a good systematic handle on elliptic Calabi-Yau threefolds
— Classify bases, tunings; most known CY3 elliptic, mirror factorizes
— Open questions regarding codimension 2 fiber singularities (matter)

• Good global picture of 6D F-theory vacua.
— Single connected moduli space
— Multiple (SUSY) non-Higgsable gauge factors dominate
— Nonabelian G, matter: limited swampland
— Abelian G = U(1)k, charged matter: infinite swampland

•Many 6D features have natural parallels in 4D.
— Certain generic geometric gauge factors
— Multiple clusters: dark matter?
— Generic matter suggests G = (SU(3)× SU(2)× U(1))/Z6

W. Taylor Lessons from 6D for geometry, the landscape and matter 45 / 45



F-theory and Calabi-Yau Manifolds
Calabi-Yau threefold geometry

The F-theory landscape and the swampland
Matter and representations

Congratulations Hirosi!

On the well-deserved
2018 Hamburg prize for theoretical physics
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