W-Supergravity DIETER LÜST (LMU, MPI)

Theoretical Physics Symposium, Hamburg, 9th. November 2018

erc

W-Supergravity DIETER LÜST (LMU, MPI)

Joint work with Sergio Ferrara: arXiv:I805. 10022 Sergio Ferrara \& Alex Kehagias: arXiv:I806.100I6, I8I0.08I47 and with D. Klaewer \& E. Palti, to appear

Hirosi, my best congratulations for the Hamburg Joachim-Herz-Preis for theoretical physics.

Hirosi, my best congratulations for the Hamburg Joachim-Herz-Preis for theoretical physics.

- Topological Strings
- Swampland

No-go theorems in Quantum Gravity:

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

No-go theorems in Quantum Gravity:

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

- Weak gravity conjecture
[N.Arkani-Hamed, L. Motl, A. Nicolis, C.Vafa (2007)]
- de Sitter swampland conjecture
[G. Obied, H. Ooguri, L. Spodyneiko, C.Vafa (20I8)]

No-go theorems in Quantum Gravity:

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Swampland program [H.Oogricicuaf coosel]

- Weak gravity conjecture
[N.Arkani-Hamed, L. Motl, A. Nicolis, C.Vafa (2007)]
- de Sitter swampland conjecture
[G. Obied, H. Ooguri, L. Spodyneiko, C.Vafa (2018)]
In general, all (also hidden) assumptions have to be very carefully stated.

No-go theorems in Quantum Gravity:

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

- Weak gravity conjecture
[N.Arkani-Hamed, L. Motl, A. Nicolis, C.Vafa (2007)]
- de Sitter swampland conjecture
[G. Obied, H. Ooguri, L. Spodyneiko, C.Vafa (2018)]
In general, all (also hidden) assumptions have to be very carefully stated.
E.g. de Sitter vacua in strongly coupled world-sheet theories: DFT and non-geometric constructions.

Reverse question:

Reverse question:

Are there quantum field theories, which according to some no-go theorems, do not exist in the IR, but nevertheless can be realized in the UV?

Reverse question:

Are there quantum field theories, which according to some no-go theorems, do not exist in the IR, but nevertheless can be realized in the UV?

Reverse question:

Are there quantum field theories, which according to some no-go theorems, do not exist in the IR, but nevertheless can be realized in the UV?

[S. Ferrara, D.L. (20I8)]

- Exist also for $\mathrm{N}=7$ supersymmetry
- Topological theories: topological twist by S - duality and diffeomorphisms
- Strongly coupled, massive spin-four theories

Classification of rigid, supersymmetric 4D field theories:

$$
\text { exist for } \mathcal{N}=1,2,4 \quad \text { supersymmetry }
$$

But not for $\mathcal{N}=3$ (automatically extends to $\mathcal{N}=4$)

Classification of rigid, supersymmetric 4D field theories:

$$
\text { exist for } \mathcal{N}=1,2,4 \quad \text { supersymmetry }
$$

But not for $\mathcal{N}=3$ (automatically extends to $\mathcal{N}=4$)

Classification of 4D supergravity theories:
exist for $\mathcal{N}=1,2,3,4,5,6,8$ supersymmetry
But not for $\mathcal{N}=7$ (automatically extends to $\mathcal{N}=8$)
[D. Freedman, A.Van Proeyen (2012)]

Main assumptions:

- weak coupling
- CPT invariant lagrangian description
- massless N -extended spin-two gravity multiplet

This agrees with perturbative 4D string constructions:

This agrees with perturbative 4D string constructions: 4D Heterotic string: \# of right-moving supercharges:

$$
\mathcal{N}_{H}=1, \quad \mathcal{N}_{H}=2, \quad \text { and } \quad \mathcal{N}_{H}=4
$$

$\mathbb{R}^{1,3} \times \quad C Y_{3} \quad K 3 \times T^{2} \quad T^{6}$
Again no $\mathcal{N}=3$ supersymmetry.

This agrees with perturbative 4D string constructions:

4D Heterotic string: \# of right-moving supercharges:

$$
\mathcal{N}_{H}=1, \quad \mathcal{N}_{H}=2, \quad \text { and } \quad \mathcal{N}_{H}=4
$$

$\mathbb{R}^{1,3} \times$
$C Y_{3}$
$K 3 \times T^{2}$
T^{6}

Again no $\mathcal{N}=3$ supersymmetry.
4D Type II string: \# of left + right-moving supercharges:
$\mathcal{N}_{I I}=1=1_{L}+0_{R}, \quad \mathcal{N}_{I I}=2=2_{L}+0_{R}, \quad \mathcal{N}_{I I}=2^{\prime}=1_{L}+1_{R}$,
$\mathcal{N}_{I I}=3=2_{L}+1_{R}, \quad \mathcal{N}_{I I}=4=4_{L}+0_{R}, \quad \mathcal{N}_{I I}=4^{\prime}=2_{L}+2_{R}$,
$\mathcal{N}_{I I}=5=4_{L}+1_{R}, \quad \mathcal{N}_{I I}=6=4_{L}+2_{R}, \quad \mathcal{N}_{I I}=8=4_{L}+4_{R}$.

How to evade „no-go theorems":

How to evade „no-go theorems":

Field theory: S-fold construction
[I. Garcia-Etxebarria, D. Regalado (2015/I6); O.Aharony, M. Evtikhiev (2015);
O.Aharony, Y. Tachikawa (2016);
Y. Imamura, S.Yokoyama (20I6)]
$\left(\mathcal{N}=3_{S Y M}\right) \equiv\left(\mathcal{N}=4_{S Y M}\right) /\left[(\mathrm{R}-\right.$ sym. $\left.) \times S L(2)_{S}\right]$.

How to evade ,,no-go theorems":
Field theory:
S-fold construction
[I. Garcia-Etxebarria, D. Regalado (2015/I6); O.Aharony, M. Evtikhiev (2015);
O.Aharony, Y.Tachikawa (2016);
Y. Imamura, S.Yokoyama (2016)]
$\left(\mathcal{N}=3_{S Y M}\right) \equiv\left(\mathcal{N}=4_{S Y M}\right) /\left[(\mathrm{R}-\right.$ sym. $\left.) \times S L(2)_{S}\right]$.

- Three invariant supercharges
- Strongly coupled theory ($S=i$)
- Non-lagrangian, superconformal theory

Follow similar strategy:

$$
\mathcal{N}=7 \mathrm{~W} \text { - Sugra: } \quad \text { S-fold of } \mathcal{N}=8 \text { Sugra }
$$

Follow similar strategy:

$$
\mathcal{N}=7 \mathrm{~W} \text { - Sugra: } \quad \text { S-fold of } \mathcal{N}=8 \text { Sugra }
$$

Use double copy construction: Gravity $=(\text { Yang-Mills })^{2}$

Follow similar strategy:

$$
\mathcal{N}=7 \mathrm{~W} \text { - Sugra: } \quad \text { S-fold of } \mathcal{N}=8 \text { Sugra }
$$

Use double copy construction: Gravity $=(\text { Yang-Mills })^{2}$

$$
\mathcal{N}=8 \text { Sugra } \equiv(\mathcal{N}=4 \mathrm{YM})^{2}
$$

Two factors: massless spin-one vector multiplets of $\mathcal{N}=4$
Result: massless spin - two multiplet of $\mathcal{N}=8$

Follow similar strategy:

$$
\mathcal{N}=7 \mathrm{~W} \text { - Sugra: } \quad \text { S-fold of } \mathcal{N}=8 \text { Sugra }
$$

Use double copy construction: Gravity $=(\text { Yang-Mills })^{2}$

$$
\mathcal{N}=8 \text { Sugra } \equiv(\mathcal{N}=4 \mathrm{YM})^{2}
$$

Two factors: massless spin-one vector multiplets of $\mathcal{N}=4$ Result: massless spin - two multiplet of $\mathcal{N}=8$

$$
\mathcal{N}=7 \mathrm{~W}-\text { Sugra } \equiv(\mathcal{N}=4 \mathrm{YM}) \otimes(\mathcal{N}=3 \mathrm{YM})
$$

Two factors: massive spin-two multiplets of $\mathcal{N}=4$ and $\mathcal{N}=3$
Result: massive spin - four multiplet of $\mathcal{N}=7$

W - supergravity

Higher spin theory

Higher spin theory
Weyl

Outline:

II) Double copy construction of W-supergravity $\mathrm{N}=7 \mathrm{~W}$-supergravity
III) Spin-four W - superstring (closed string)
IV) Spin-two W-superstring (open string)

V) Conclusion and Outlook

II) Double copy construction of W - supergravity

$$
\operatorname{QFT}\left(\mathcal{N}_{L}\right) \otimes \operatorname{QFT}\left(\mathcal{N}_{R}\right)=\operatorname{Sugra}\left(\mathcal{N}_{L}+\mathcal{N}_{R}\right)
$$

Open string x Open string $=$ Closed string
II) Double copy construction of W - supergravity

$$
\operatorname{QFT}\left(\mathcal{N}_{L}\right) \otimes \operatorname{QFT}\left(\mathcal{N}_{R}\right)=\operatorname{Sugra}\left(\mathcal{N}_{L}+\mathcal{N}_{R}\right)
$$

Open string \times Open string $=$ Closed string

Operators/fields: $\quad \Phi_{L+R}=\Phi_{L} \otimes \Phi_{R}$
Φ_{L}, Φ_{R} : Operators with scaling dimensions h_{L}, h_{R}
Require: $\quad h_{L}=h_{R}=h \quad\left(m_{L}=m_{R}=m\right)$

4D Standard massless supergravity:

Tensor product of two massless vector multiplets $(h=1)$
Supergravity : Massless $\operatorname{Spin}(2)=V_{L, \mathcal{N}_{L}} \otimes V_{R, \mathcal{N}_{R}}$

4D Standard massless supergravity:

Tensor product of two massless vector multiplets $(h=1)$
Supergravity: Massless $\operatorname{Spin}(2)=V_{L, \mathcal{N}_{L}} \otimes V_{R, \mathcal{N}_{R}}$
(i) $\mathcal{N}_{L}=\mathcal{N}_{R}=4 \quad \Rightarrow \mathcal{N}=8$ Sugra
(ii) $\mathcal{N}_{L}=2, \mathcal{N}_{R}=4 \Rightarrow \mathcal{N}=6$ Sugra
(iii) $\mathcal{N}_{L}=1, \mathcal{N}_{R}=4 \Rightarrow \mathcal{N}=5$ Sugra
(iv) $\mathcal{N}_{L}=0, \mathcal{N}_{R}=4 \Rightarrow \mathcal{N}=4$ Sugra
(v) $\mathcal{N}_{L}=\mathcal{N}_{R}=2 \Rightarrow \mathcal{N}=4$ Sugra
(vi) $\mathcal{N}_{L}=1, \mathcal{N}_{R}=2 \Rightarrow \mathcal{N}=3$ Sugra
(vii) $\mathcal{N}_{L}=0, \mathcal{N}_{R}=2 \Rightarrow \mathcal{N}=2$ Sugra
(viii) $\mathcal{N}_{L}=\mathcal{N}_{R}=1 \Rightarrow \mathcal{N}=2$ Sugra
(ix) $\mathcal{N}_{L}=0, \mathcal{N}_{R}=1 \Rightarrow \mathcal{N}=1$ Sugra

Non-standard W-supergravities in 4D :
We will need massive multiplets of \mathcal{N} - extended supersymmetric field theories:
[S. Ferrara, C. Savoy, B. Zumino (I98I)]

Non-standard W-supergravities in 4D :

We will need massive multiplets of \mathcal{N} - extended supersymmetric field theories:
Massive spin-two Weyl super-multiplets:
$W_{\mathcal{N}=4}: \operatorname{Spin}(2)+\underline{8} \times \operatorname{Spin}(3 / 2)+\underline{27} \times \operatorname{Spin}(1)+\underline{48} \times \operatorname{Spin}(1 / 2)+\underline{42} \times \operatorname{Spin}(0)$
States build $U S p(8)$ representations.
$W_{\mathcal{N}=3}: \operatorname{Spin}(2)+\underline{6} \times \operatorname{Spin}(3 / 2)+(\underline{14}+\underline{1}) \times \operatorname{Spin}(1)+\left(\underline{14^{\prime}}+\underline{6}\right) \times \operatorname{Spin}(1 / 2)+\underline{14} \times \operatorname{Spin}(0)$
States build $U S p(6)$ representations.
$W_{\mathcal{N}=2}: \operatorname{Spin}(2)+\underline{4} \times \operatorname{Spin}(3 / 2)+(\underline{5}+\underline{1}) \times \operatorname{Spin}(1)+\underline{4} \times \operatorname{Spin}(1 / 2)+\operatorname{Spin}(0)$
States build $U S p(4)$ representations.
$W_{\mathcal{N}=1}: \operatorname{Spin}(2)+\underline{2} \times \operatorname{Spin}(3 / 2)+\operatorname{Spin}(1)$
States build $U S p(2)$ representations.

S - fold construction of $\mathrm{N}=3$ field theory:

S - fold construction of $\mathrm{N}=3$ field theory:

One performs two types of simultaneous twists/projections:
R-symmetry: $Q^{\alpha ; 1,2,3} \rightarrow e^{-i \pi / k} Q^{\alpha ; 1,2,3}, Q^{\alpha ; 4} \rightarrow e^{3 \pi / k} Q^{\alpha ; 4}$
S-duality: $\quad Q^{\alpha ; 1,2,3,4} \rightarrow e^{i \pi / k} Q^{\alpha ; 1,2,3,4}$
$\Longrightarrow \mathcal{N}=4$ Susy is broken to $\mathcal{N}=3$.

S - fold construction of $\mathrm{N}=3$ field theory:

One performs two types of simultaneous twists/projections: R-symmetry: $Q^{\alpha ; 1,2,3} \rightarrow e^{-i \pi / k} Q^{\alpha ; 1,2,3}, Q^{\alpha ; 4} \rightarrow e^{3 \pi / k} Q^{\alpha ; 4}$ S-duality: $\quad Q^{\alpha ; 1,2,3,4} \rightarrow e^{i \pi / k} Q^{\alpha ; 1,2,3,4}$
$\Longrightarrow \mathcal{N}=4$ Susy is broken to $\mathcal{N}=3$.
Massless spin-one vector field $V_{i}(x, \theta)$ is not invariant under the S - fold projection.

S - fold construction of $\mathrm{N}=3$ field theory:

One performs two types of simultaneous twists/projections:
R-symmetry: $\quad Q^{\alpha ; 1,2,3} \rightarrow e^{-i \pi / k} Q^{\alpha ; 1,2,3}, Q^{\alpha ; 4} \rightarrow e^{3 \pi / k} Q^{\alpha ; 4}$
S-duality: $\quad Q^{\alpha ; 1,2,3,4} \rightarrow e^{i \pi / k} Q^{\alpha ; 1,2,3,4}$
$\Longrightarrow \mathcal{N}=4$ Susy is broken to $\mathcal{N}=3$.
Massless spin-one vector field $V_{i}(x, \theta)$ is not invariant under the S - fold projection.

Invariant operators: $\quad \Phi^{2 p}=\operatorname{Tr}\left(V_{i 1} \bar{V}_{i 2} \ldots V_{i 2 p-1} \bar{V}_{i 2 p}\right)$

$$
(h=2 p)
$$

Lowest invariant operator: $\quad(h=2)$

massive spin - two super-Weyl multiplet:

```
W\mathcal{N=3}:
```

$W_{\mathcal{N}=3}$ is a true $\mathcal{N}=3$ supermultiplet.

W - supergravity $=\operatorname{QFT}\left(\mathcal{N}_{L}\right) \otimes \operatorname{QFT}\left(\mathcal{N}_{R}=3\right)$

S - fold construction of W-gravity:
W - supergravity $=\operatorname{QFT}\left(\mathcal{N}_{L}\right) \otimes \operatorname{QFT}\left(\mathcal{N}_{R}=3\right)$
Fields of lowest mass: massive spin-four super-multiplet:

Tensor product of two massive, spin-two Weyl multiplets:

W - supergravity $=\operatorname{QFT}\left(\mathcal{N}_{L}\right) \otimes \operatorname{QFT}\left(\mathcal{N}_{R}=3\right)$
Fields of lowest mass: massive spin-four super-multiplet:

Tensor product of two massive, spin-two Weyl multiplets:
Closed string $=$ Open string \times Open string

$$
\Phi_{L+R, \mathcal{N}_{L}+3}^{4}=W_{L, \mathcal{N}_{L}} \otimes W_{R, \mathcal{N}_{R}=3}
$$

(+matter)

All possible S-fold, W - supergravities:
(i) $\mathcal{N}_{L}=4, \mathcal{N}_{R}=3 \Longrightarrow \mathcal{N}=7 \mathrm{~W}$ - Sugra
(ii) $\mathcal{N}_{L}=\mathcal{N}_{R}=3 \quad \Longrightarrow \mathcal{N}=6 \mathrm{~W}$ - Sugra
(iii) $\mathcal{N}_{L}=2, \mathcal{N}_{R}=3 \Longrightarrow \mathcal{N}=5 \mathrm{~W}-$ Sugra
(iv) $\mathcal{N}_{L}=1, \mathcal{N}_{R}=3 \Longrightarrow \mathcal{N}=4 \mathrm{~W}-$ Sugra
(v) $\mathcal{N}_{L}=0, \mathcal{N}_{R}=3 \Longrightarrow \mathcal{N}=3 \mathrm{~W}-$ Sugra

Most prominent example: $\mathcal{N}=7 \mathrm{~W}$ - supergravity:

$$
\begin{array}{r}
\left(\operatorname{Spin}(2)+8 \times \operatorname{Spin}\left(\frac{3}{2}\right)+27 \times \operatorname{Spin}(1)+48 \times \operatorname{Spin}\left(\frac{1}{2}\right)+42 \times \operatorname{Spin}(0)\right)_{\mathcal{N}=4} \\
\otimes(\operatorname{Spin}(2)+6 \times \operatorname{Spin}(3 / 2)+15 \times \operatorname{Spin}(1)+20 \times \operatorname{Spin}(1 / 2)+14 \times \operatorname{Spin}(0))_{\mathcal{N}=3} \\
\left(\operatorname{Spin}(4)+\underline{14}_{1} \times \operatorname{Spin}\left(\frac{7}{2}\right)+\left(\underline{90}_{2}+\underline{1}\right) \times \operatorname{Spin}(3)+\left(\underline{350}_{3}+\underline{14}_{1}\right) \times \operatorname{Spin}\left(\frac{5}{2}\right)\right. \\
+\left(\underline{90}_{2}+\underline{910}_{4}\right) \times \operatorname{Spin}(2)+\left(\underline{350}_{3}+\underline{1638}_{5}\right) \times \operatorname{Spin}\left(\frac{3}{2}\right)+\left(\underline{2002}_{6}+\underline{910}_{4}\right) \times \operatorname{Spin}(1) \\
\left.+\left(\underline{1430}_{5}+\underline{1638}_{5}\right) \times \operatorname{Spin}\left(\frac{1}{2}\right)+\underline{2002}_{6} \times \operatorname{Spin}(0)\right)_{\mathcal{N}=7}
\end{array}
$$

Most prominent example: $\mathcal{N}=7 \quad \mathrm{~W}$ - supergravity:

$$
\begin{array}{r}
\left(\operatorname{Spin}(2)+8 \times \operatorname{Spin}\left(\frac{3}{2}\right)+27 \times \operatorname{Spin}(1)+48 \times \operatorname{Spin}\left(\frac{1}{2}\right)+42 \times \operatorname{Spin}(0)\right)_{\mathcal{N}=4} \\
\otimes(\operatorname{Spin}(2)+6 \times \operatorname{Spin}(3 / 2)+15 \times \operatorname{Spin}(1)+20 \times \operatorname{Spin}(1 / 2)+14 \times \operatorname{Spin}(0))_{\mathcal{N}=3} \\
\left(\operatorname{Spin}(4)+\underline{14}_{1} \times \operatorname{Spin}\left(\frac{7}{2}\right)+\left(\underline{90}_{2}+\underline{1}\right) \times \operatorname{Spin}(3)+\left(\underline{350}_{3}+\underline{14}_{1}\right) \times \operatorname{Spin}\left(\frac{5}{2}\right)\right. \\
+\left(\underline{90}_{2}+\underline{910}_{4}\right) \times \operatorname{Spin}(2)+\left(\underline{350}_{3}+\underline{1638}_{5}\right) \times \operatorname{Spin}\left(\frac{3}{2}\right)+\left(\underline{2002}_{6}+\underline{910}_{4}\right) \times \operatorname{Spin}(1) \\
\left.+\left(\underline{1430}_{5}+\underline{1638}_{5}\right) \times \operatorname{Spin}\left(\frac{1}{2}\right)+\underline{2002}_{6} \times \operatorname{Spin}(0)\right)_{\mathcal{N}=7}
\end{array}
$$

Contains also spin-two and spin-3/2 states.
All massive states form representations of $U S p(14)$
Strongly coupled theory without Langrangian
Can also be obtained directly by S-fold of $\mathcal{N}=8$
Precisely appears at first mass level in corresponding string construction.

Outline:

II) Double copy construction of W-supergravity $\mathrm{N}=7 \mathrm{~W}$-supergravity
III) Spin-four W - superstring (closed string)
IV) Spin-two W-superstring (open string) \longrightarrow Two conjectures
V) Conclusion and Outlook
III) W - Superstring construction (closed string)

Basic requirements for $\mathcal{N}=7$ in 4D:
Left-moving sector is untouched:
Type II: Four supercharges
Heterotic: Zero supercharges
Right-moving sector gets projected/twisted as in field theory:
Three invariant supercharges
No massless excitations

4D type II closed string in light cone gauge on

$$
\mathbb{R}^{1,1} \times \mathbb{R}^{2} \times T^{6}
$$

4D type II closed string in light cone gauge on

$$
\underset{\uparrow}{\mathbb{R}^{1,1}} \times \underset{\mathbb{R}^{2}}{ } \times T^{6}
$$

I complex uncompactified, transversal coordinate:

$$
X(z, \bar{z})=X_{L}(\bar{z})+X_{R}(z)
$$

4D type II closed string in light cone gauge on

3 complex compactified coordinates:

$$
Z^{i}(z, \bar{z})=Z_{L}^{i}(\bar{z})+Z_{R}^{i}(z) \quad(i=1,2,3)
$$

S-fold projection in string theory:

I.) R-symmetry projection in the internal sector:

Projection by a discrete element of T-duality group $\mathrm{SO}(6,6)$ in the internal sector

Can be represented by discrete \mathbb{Z}_{4} rotation on the internal coordinates:

$$
\begin{array}{cc}
Z_{L}^{i} \rightarrow Z_{L}^{i} & \text { Moduli have to be frozen at their } \\
\text { fixed point values: } \\
Z_{R}^{i} \rightarrow e^{-\frac{i \pi}{2}} Z_{R}^{i} & \tau=\rho=i
\end{array}
$$

The internal space is a completely left-right asymmetric \mathbb{Z}_{4} orbifold.
2.) S - duality projection in the space-time sector:

It is given by a discrete element of the (string) Geroch group.
[R. Geroch (I972);
I. Bakas (1994)]
2.) S - duality projection in the space-time sector:

It is given by a discrete element of the (string) Geroch group.
I. Bakas (1994)]

The Geroch group contains:
(i) Axion-dilaton transformations:

$$
\begin{gathered}
S=a+i e^{-2 \phi} \\
S L(2)_{S}: \quad S \rightarrow \frac{\tilde{a}^{\prime} S+\tilde{b}^{\prime}}{\tilde{c}^{\prime} S+\tilde{d}^{\prime}}, \quad \tilde{a}^{\prime} \tilde{d}^{\prime}-\tilde{b}^{\prime} \tilde{c}^{\prime}=1
\end{gathered}
$$

(ii) Ehlers transformations - G-duality:

Four-dimensional, transversal, complex graviton field:

$$
G=\frac{g_{12}}{g_{11}}+i \frac{\sqrt{\operatorname{det} g}}{g_{11}}
$$

Large 4D diffeomorphisms (Ehlers transformation):

$$
S L(2)_{G}: \quad G \rightarrow \frac{\tilde{a} G+\tilde{b}}{\tilde{c} G+\tilde{d}}, \quad \tilde{a} \tilde{d}-\tilde{b} \tilde{c}=1
$$

(ii) Ehlers transformations - G-duality:

Four-dimensional, transversal, complex graviton field:

$$
G=\frac{g_{12}}{g_{11}}+i \frac{\sqrt{\operatorname{det} g}}{g_{11}}
$$

Large 4D diffeomorphisms (Ehlers transformation):

$$
S L(2)_{G}: \quad G \rightarrow \frac{\tilde{a} G+\tilde{b}}{\tilde{c} G+\tilde{d}}, \quad \tilde{a} \tilde{d}-\tilde{b} \tilde{c}=1
$$

Combined action of $S L(2)_{S}$ and $S L(2)_{G}$:

$$
O(2,2)_{S, G} \simeq S L(2)_{S} \times S L(2)_{G} \quad \text { (Geroch group) }
$$

(ii) Ehlers transformations - G-duality:

Four-dimensional, transversal, complex graviton field:

$$
G=\frac{g_{12}}{g_{11}}+i \frac{\sqrt{\operatorname{det} g}}{g_{11}}
$$

Large 4D diffeomorphisms (Ehlers transformation):

$$
S L(2)_{G}: \quad G \rightarrow \frac{\tilde{a} G+\tilde{b}}{\tilde{c} G+\tilde{d}}, \quad \tilde{a} \tilde{d}-\tilde{b} \tilde{c}=1
$$

Combined action of $S L(2)_{S}$ and $S L(2)_{G}$:

$$
O(2,2)_{S, G} \simeq S L(2)_{S} \times S L(2)_{G} \quad \text { (Geroch group) }
$$

$S L(2)_{S}$ and $S L(2)_{G}$ also act on the transversal string coordinates X_{L}, X_{R} as certain in general left-right asymmetric rotations.

Particular discrete \mathbb{Z}_{4} element:

$$
X_{L}(\bar{z}) \rightarrow X_{L}(\bar{z}), \quad X_{R}(z) \rightarrow e^{-\frac{i \pi}{2}} X_{R}(z)
$$

Dilaton and metric must be frozen: $\quad S=G=i$.

This is a completely asymmetric \mathbb{Z}_{4} rotation of the transversal, uncompactified coordinates.

Geroch transformation becomes T-duality when further compactifying to two dimensions
[I. Florakis, I. Garcia-Etxebarria, D. Lüst, D. Regalado (2018)]

Invariant right-moving spectrum:

$64+64$ invariant states at the first mass level:

Invariant right-moving spectrum:

$64+64$ invariant states at the first mass level:

Bosons:

$$
\begin{array}{rrrr}
b_{-1 / 2}^{i} b_{-1 / 2}^{j} b_{-1 / 2}^{I}|0\rangle, & b_{-1 / 2}^{i} b_{-1 / 2}^{I} b_{-1 / 2}^{J}|0\rangle, & b_{-1 / 2}^{I} b_{-1 / 2}^{J} b_{-1 / 2}^{K}|0\rangle \\
\alpha_{-1}^{i} b_{-1 / 2}^{j}|0\rangle, & \alpha_{-1}^{i} b_{-1 / 2}^{I}|0\rangle, & \alpha_{-1}^{I} b_{-1 / 2}^{i}|0\rangle, & b_{-3 / 2}^{I}|0\rangle \\
\alpha_{-1}^{I} b_{-1 / 2}^{J}|0\rangle
\end{array}
$$

$\operatorname{Spin}(2)+(\underline{14}+\underline{1}) \times \operatorname{Spin}(1)+\underline{14} \times \operatorname{Spin}(0)$

Invariant right-moving spectrum:

$64+64$ invariant states at the first mass level:

Bosons: $\quad b_{-1 / 2}^{i} b_{-1 / 2}^{j}{ }_{-1 / 2}^{I}|0\rangle, \quad b_{-1 / 2}^{i} b_{-1 / 2}^{J} b_{-1 / 2}^{J}|0\rangle, \quad b_{-1 / 2}^{I} b_{-1 / 2}^{J} b_{-1 / 2}^{K}|0\rangle$,

$$
\begin{array}{ccc}
\alpha_{-1}^{i} b_{-1 / 2}^{j}|0\rangle, & \alpha_{-1}^{i} b_{-1 / 2}^{I}|0\rangle, & \alpha_{-1}^{I} b_{-1 / 2}^{i} b_{-3 / 2}^{i}|0\rangle,
\end{array} \alpha_{-1}^{I} b_{-1 / 2}^{I} b_{-1 / 2}^{I}|0\rangle
$$

$\operatorname{Spin}(2)+(\underline{14}+\underline{1}) \times \operatorname{Spin}(1)+\underline{14} \times \operatorname{Spin}(0)$

Fermions: $\quad(8)_{c}+(56)_{c}: \quad b_{-1}^{A}|a\rangle, \quad(8)_{s}+(56)_{s}: \quad \alpha_{-1}^{A}|\dot{a}\rangle$
$\underline{6} \times \operatorname{Spin}(3 / 2)+\left(\underline{14^{\prime}}+\underline{6}\right) \times \operatorname{Spin}(1 / 2)$

Invariant right-moving spectrum:

$64+64$ invariant states at the first mass level:
Bosons: $\quad b_{-1 / 2}^{i} b_{-1 / 2}^{j}{ }_{-1 / 2}^{I}|0\rangle, \quad b_{-1 / 2}^{i} b_{-1 / 2}^{J} b_{-1 / 2}^{J}|0\rangle, \quad b_{-1 / 2}^{I} b_{-1 / 2}^{J} b_{-1 / 2}^{K}|0\rangle$,

$$
\begin{array}{ccc}
b_{-1 / 2}^{i}|0\rangle, & b_{-3 / 2}^{I}|0\rangle \\
\left.\alpha_{-1}^{i} b_{-1 / 2}^{j} 10\right\rangle, & \alpha_{-1}^{i} b_{-1 / 2}^{I}|0\rangle, & \alpha_{-1}^{I} b_{-1 / 2}^{i}|0\rangle, \\
\alpha_{-1}^{I} b_{-1 / 2}^{I}|0\rangle
\end{array}
$$

$\operatorname{Spin}(2)+(\underline{14}+\underline{1}) \times \operatorname{Spin}(1)+\underline{14} \times \operatorname{Spin}(0)$

Fermions: $\quad(8)_{c}+(56)_{c}: \quad b_{-1}^{A}|a\rangle, \quad(8)_{s}+(56)_{s}: \quad \alpha_{-1}^{A}|\dot{a}\rangle$

$$
\underline{6} \times \operatorname{Spin}(3 / 2)+\left(\underline{14^{\prime}}+\underline{6}\right) \times \operatorname{Spin}(1 / 2)
$$

This precisely agrees with the massive $\mathcal{N}=3$ Weyl multiplet.

Now we can consider the following type II S - fold:

$$
\left(\mathcal{N}=7_{I I}\right) \equiv\left(\mathcal{N}=8_{I I}\right) /(\mathrm{T}-\text { duality } \times \text { Geroch })
$$

3 invariant right-moving supercharges .
4 invariant left-moving supercharges .

- 7 invariant supercharges
- $S=i \Rightarrow$ strongly coupled
- $G=i \Rightarrow$ no massless graviton

Spectrum of type II $\mathcal{N}=7 \mathrm{~W}$ - superstring theory:

- No massless states, no massless graviton \& gravitini.
- Invariant states at first mass level:

Tensor product: (Fermionic left) \times (fermionic right):

B : $[\operatorname{Spin}(2)+15 \times \operatorname{Spin}(1)+14 \times \operatorname{Spin}(0)]_{R} \times[\operatorname{Spin}(2)+27 \times \operatorname{Spin}(1)+42 \times \operatorname{Spin}(0)]_{L}$,

$$
[6 \times \operatorname{Spin}(3 / 2)+20 \times \operatorname{Spin}(1 / 2)]_{R} \times[8 \times \operatorname{Spin}(3 / 2)+48 \times \operatorname{Spin}(1 / 2)]_{L}
$$

$$
\text { F }: \quad[6 \times \operatorname{Spin}(3 / 2)+20 \times \operatorname{Spin}(1 / 2)]_{R} \times[\operatorname{Spin}(2)+27 \times \operatorname{Spin}(1)+42 \times \operatorname{Spin}(0)]_{L}
$$

$$
[\operatorname{Spin}(2)+15 \times \operatorname{Spin}(1)+14 \times \operatorname{Spin}(0)]_{R} \times[8 \times \operatorname{Spin}(3 / 2)+48 \times \operatorname{Spin}(1 / 2)]_{L}
$$

B : $\quad[\operatorname{Spin}(4)+91 \times \operatorname{Spin}(3)+1000 \times \operatorname{Spin}(2)+2912 \times \operatorname{Spin}(1)+2002 \times \operatorname{Spin}(0)]$,

$$
\mathrm{F}: \quad\left[14 \times \operatorname{Spin}\left(\frac{7}{2}\right)+364 \times \operatorname{Spin}\left(\frac{5}{2}\right)+1988 \times \operatorname{Spin}\left(\frac{3}{2}\right)+3068 \times \operatorname{Spin}\left(\frac{1}{2}\right)\right.
$$

Massive spin - four multiplet of $\mathcal{N}=7$.
Agrees with double copy construction.

Outline:

II) Double copy construction of W-supergravity $\mathrm{N}=7 \mathrm{~W}$-supergravity
III) Spin-four W - superstring (closed string)
IV) Spin-two W-superstring (open string)

V) Conclusion and Outlook

IV) Spin-two W-superstring (open string)

Open strings on D3-branes:

- Massless Yang-Mills gauge bosons + superpartners
- Massive spin-two excitations + super partners

Mass: $\quad M_{W}=g_{s} M_{s}$
Closed strings in bulk:
Massless spin-two graviton + superpartners

Effective action of spin-two sector:
Weyl-square supergravity:

$$
S=\int d^{4} x \sqrt{-g}\left(M_{p}^{2} R+\frac{1}{g_{W}^{2}} W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}+\ldots\right)
$$

Weyl tensor: $\quad W_{\mu \nu \rho \sigma}=R_{\mu \nu \rho \sigma}+g_{\mu[\sigma} R_{\rho] \nu}+g_{\nu \mid \rho} R_{\sigma] \mu}+\frac{R}{3} g_{\mu[\rho} g_{\sigma] \nu}$
Propagating degrees of freedom: Bi -gravity theory:
Closed string: massless spin-two: metric $g_{\mu \nu}$
Open string: massive spin-two: 2 nd. „metric" $w_{\mu \nu}$

4D Weyl-square W - supergravity exists for $\mathcal{N}=4,3,2, I, 0$ One can also compute the fermion S-fold

Masses and couplings:

$$
M_{W}=g_{W} M_{p}
$$

In terms of string parameters:

$$
M_{p}=M_{s} \sqrt{\mathcal{V}}, \quad g_{W}=\frac{g_{s}}{\sqrt{\mathcal{V}}}=\frac{g_{Y M}^{2}}{\sqrt{\mathcal{V}}}<g_{Y M}
$$

$\mathcal{V}:$ Internal volume

Massless limit: two massless spin-two states

$$
\begin{gathered}
M_{W} \rightarrow 0: \quad g_{W} \rightarrow 0 \text { or } M_{p} \rightarrow 0 \\
S=\int d^{4} x \sqrt{-g}\left(\frac{1}{g_{W}^{2}} W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}+\ldots\right)
\end{gathered}
$$

In terms of string parameters:

$$
M_{s} \rightarrow 0, \mathcal{V} \rightarrow \infty \text { or } g_{s} \rightarrow 0
$$

Massless limit: two massless spin-two states

$$
\begin{gathered}
M_{W} \rightarrow 0: \quad g_{W} \rightarrow 0 \text { or } M_{p} \rightarrow 0 \\
S=\int d^{4} x \sqrt{-g}\left(\frac{1}{g_{W}^{2}} W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}+\ldots\right)
\end{gathered}
$$

In terms of string parameters:

$$
M_{s} \rightarrow 0, \mathcal{V} \rightarrow \infty \text { or } g_{s} \rightarrow 0
$$

Theory becomes locally superconformal

Massless limit: two massless spin-two states

$$
\begin{gathered}
M_{W} \rightarrow 0: \quad g_{W} \rightarrow 0 \text { or } M_{p} \rightarrow 0 \\
S=\int d^{4} x \sqrt{-g}\left(\frac{1}{g_{W}^{2}} W_{\mu \nu \rho \sigma} W^{\mu \nu \rho \sigma}+\ldots\right)
\end{gathered}
$$

In terms of string parameters:

$$
M_{s} \rightarrow 0, \mathcal{V} \rightarrow \infty \text { or } g_{s} \rightarrow 0
$$

Theory becomes locally superconformal
Helicity zero component of spin-two state decouples

Conjecture about holography:

$\mathcal{N}=4$ spin-two superconformal Weyl supergravity on a 4D boundary (D3-branes) is holographically dual
to $\mathcal{N}=8$ spin-four W-supergravity in the 5 D bulk theory.

Conjecture about holography:

$\mathcal{N}=4$ spin-two superconformal Weyl supergravity on a 4D boundary (D3-branes) is holographically dual
to $\mathcal{N}=8$ spin-four W-supergravity in the 5 D bulk theory.

Spin-four operator on the boundary couples to spin-four field in the bulk:

$$
J^{\mu \nu \rho \sigma}=\mathrm{ST}\left[W^{\mu \alpha \gamma \kappa} W_{\alpha \delta \kappa}^{\rho} W_{\beta \gamma \lambda}^{\nu} W^{\sigma \beta \delta \lambda}\right]
$$

4D conformal dimension: $\Delta_{J}=8$
5D bulk mass: $\quad m^{2} \alpha^{\prime}=(\Delta+s-2)(\Delta-s+2-d)$

$$
m^{2}=20 / \alpha^{\prime}
$$

Spin-two swampland conjecture:

D. Klaewer, D.L., E. Palti, to appear

There cannot be more than one massless spin-two state in quantum gravity.

Spin-two swampland conjecture:

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$
\begin{gathered}
\Lambda_{W}=g_{W} M_{p} \\
\Lambda_{W} \rightarrow 0 \text { for } g_{W} \rightarrow 0
\end{gathered}
$$

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$
\begin{gathered}
\Lambda_{W}=g_{W} M_{p} \\
\Lambda_{W} \rightarrow 0 \text { for } g_{W} \rightarrow 0
\end{gathered}
$$

This cut-off is associated with an infinite tower of states above this scale.

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$
\begin{gathered}
\Lambda_{W}=g_{W} M_{p} \\
\Lambda_{W} \rightarrow 0 \text { for } g_{W} \rightarrow 0
\end{gathered}
$$

This cut-off is associated with an infinite tower of states above this scale.

New global symmetry of $\quad \mathcal{L} \simeq \frac{1}{g_{W}^{2}} W^{2} \quad$ in this limit ?

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$
\begin{gathered}
\Lambda_{W}=g_{W} M_{p} \\
\Lambda_{W} \rightarrow 0 \text { for } g_{W} \rightarrow 0
\end{gathered}
$$

This cut-off is associated with an infinite tower of states above this scale.

New global symmetry of $\quad \mathcal{L} \simeq \frac{1}{g_{W}^{2}} W^{2} \quad$ in this limit?
Compare with WGC cut-off: $\quad \Lambda_{W G C}=g_{Y M} M_{p}>\Lambda_{W}$

Three evidences for the conjecture:

Three evidences for the conjecture:

- Open string realization for spin-two on D3-brane:

$$
M_{n} \simeq \sqrt{n} g_{W} M_{p}
$$

Three evidences for the conjecture:

- Open string realization for spin-two on D3-brane:

$$
M_{n} \simeq \sqrt{n} g_{W} M_{p}
$$

- KK realization for spin-two.

Three evidences for the conjecture:

- Open string realization for spin-two on D3-brane:

$$
M_{n} \simeq \sqrt{n} g_{W} M_{p}
$$

- KK realization for spin-two.
- Massless Weyl-square gravity:

Generic grounds state is de Sitter.

Three evidences for the conjecture:

- Open string realization for spin-two on D3-brane:

$$
M_{n} \simeq \sqrt{n} g_{W} M_{p}
$$

- KK realization for spin-two.
- Massless Weyl-square gravity:

Generic grounds state is de Sitter.

This is censored by the de Sitter swampland conjecture !

G. Obied, H. Ooguri, L. Spodyneiko, C.Wafa, 2018

V) Summary

We have provided evidence for the existence of new
$\mathrm{N}=7, \mathrm{~W}$ - supergravity and W - superstring theories.
Strongly coupled theories with frozen graviton!
(Strongly coupled phase of gravity ??)

- The internal space is non-geometric
- modding out by T-duality.
- In 4D also modding out by S-duality
- strongly coupled theory.
- In 4D also modding by large diffeomorphism massive, topological theory.

No proof (yet) that these theories are fully consistent and full-fledged string theories.

But there exist fully consistent 2D non-geometric string construction with $\mathrm{N}=(20,8)$ supercharges
(and also with $N=(32,0), N=(24,24)$ and $N=(48,0)$).
[I. Garcia-Etxebarria, I. Florakis, D.L., D. Regalado (20I7)]

No proof (yet) that these theories are fully consistent and full-fledged string theories.

But there exist fully consistent 2D non-geometric string construction with $\mathrm{N}=(20,8)$ supercharges
(and also with $N=(32,0), N=(24,24)$ and $N=(48,0)$).
[I. Garcia-Etxebarria, I. Florakis, D.L., D. Regalado (2017)]

Other exotic, strongly coupled gravity theories:
$(4,0)$ supergravity in six dimensions.
[C. Hull (2000)]

Two new conjectures about W - supergravity:

Holographic duality: 4D spin-two \longleftrightarrow 5D spin-four

New cut-off: spin-two scale

Should also hold for higher spins !

Two new conjectures about W - supergravity:

Holographic duality: 4D spin-two \longleftrightarrow 5D spin-four

New cut-off: spin-two scale

Should also hold for higher spins !

Thank you!

