

W-Supergravity DIETER LÜST (LMU, MPI)

W-Supergravity DIETER LÜST (LMU, MPI)

Joint work with Sergio Ferrara: arXiv:1805.10022 Sergio Ferrara & Alex Kehagias: arXiv:1806.10016, 1810.08147 and with D. Klaewer & E. Palti, to appear

Hirosi, my best congratulations for the Hamburg Joachim-Herz-Preis for theoretical physics.

Hirosi, my best congratulations for the Hamburg Joachim-Herz-Preis for theoretical physics.

- Topological Strings
- Swampland
- •

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Swampland program

[H. Ooguri, C. Vafa (2006)]

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Swampland program

[H. Ooguri, C. Vafa (2006)]

Weak gravity conjecture

[N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa (2007)]

de Sitter swampland conjecture

[G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa (2018)]

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Swampland program

[H. Ooguri, C. Vafa (2006)]

Weak gravity conjecture

[N.Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa (2007)]

de Sitter swampland conjecture

[G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa (2018)]

In general, all (also hidden) assumptions have to be very carefully stated.

Which IR consistent quantum field theories cannot be embedded into a UV complete quantum gravity theory?

Swampland program

[H. Ooguri, C. Vafa (2006)]

Weak gravity conjecture

[N. Arkani-Hamed, L. Motl, A. Nicolis, C. Vafa (2007)]

de Sitter swampland conjecture

[G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa (2018)]

In general, all (also hidden) assumptions have to be very carefully stated.

E.g. de Sitter vacua in strongly coupled world-sheet theories: DFT and non-geometric constructions.

[F. Hassler, D.L., S. Massai (2014)]

Are there quantum field theories, which according to some no-go theorems, do not exist in the IR, but nevertheless can be realized in the UV?

Are there quantum field theories, which according to some no-go theorems, do not exist in the IR, but nevertheless can be realized in the UV?

> W - supergravity & W - superstrings

[S. Ferrara, D.L. (2018)]

Are there quantum field theories, which according to some no-go theorems, do not exist in the IR, but nevertheless can be realized in the UV?

W - supergravity & W - superstrings

[S. Ferrara, D.L. (2018)]

- Exist also for N=7 supersymmetry
- Topological theories: topological twist by S duality and diffeomorphisms
- Strongly coupled, massive spin-four theories

Classification of rigid, supersymmetric 4D field theories:

exist for $\mathcal{N}=1,\,2,\,4$ supersymmetry

But not for $\mathcal{N}=3$ (automatically extends to $\mathcal{N}=4$)

Classification of rigid, supersymmetric 4D field theories:

exist for $\mathcal{N}=1,\,2,\,4$ supersymmetry

But not for $\mathcal{N}=3$ (automatically extends to $\mathcal{N}=4$)

Classification of 4D supergravity theories:

exist for $\mathcal{N}=1,\,2,\,3,\,4,\,5,\,6,\,8$ supersymmetry

But not for $\mathcal{N}=7$ (automatically extends to $\mathcal{N}=8$)

Main assumptions:

weak coupling

CPT invariant lagrangian description

massless N-extended spin-two gravity multiplet

This agrees with perturbative 4D string constructions:

This agrees with perturbative 4D string constructions:

4D Heterotic string: # of right-moving supercharges:

$$\mathcal{N}_H = 1$$
, $\mathcal{N}_H = 2$, and $\mathcal{N}_H = 4$
 $\mathbb{R}^{1,3} \times CY_3$ $K3 \times T^2$ T^6

Again no $\mathcal{N}=3$ supersymmetry.

This agrees with perturbative 4D string constructions:

4D Heterotic string: # of right-moving supercharges:

$$\mathcal{N}_H = 1$$
, $\mathcal{N}_H = 2$, and $\mathcal{N}_H = 4$
 $\mathbb{R}^{1,3} \times CY_3$ $K3 \times T^2$ T^6

Again no $\mathcal{N}=3$ supersymmetry.

4D Type II string: # of left + right-moving supercharges:

$$\mathcal{N}_{II} = 1 = 1_L + 0_R$$
, $\mathcal{N}_{II} = 2 = 2_L + 0_R$, $\mathcal{N}_{II} = 2' = 1_L + 1_R$, $\mathcal{N}_{II} = 3 = 2_L + 1_R$, $\mathcal{N}_{II} = 4 = 4_L + 0_R$, $\mathcal{N}_{II} = 4' = 2_L + 2_R$, $\mathcal{N}_{II} = 5 = 4_L + 1_R$, $\mathcal{N}_{II} = 6 = 4_L + 2_R$, $\mathcal{N}_{II} = 8 = 4_L + 4_R$.

Again no $\mathcal{N}=7$ supersymmetry. [H. Kawai, S. Lewellen, H. Tye (1987); W. Lerche, D.L., A.Schellekens (1987); A. Antoniadis, C. Bachas, C. Kounnas (1987);

How to evade "no-go theorems":

How to evade "no-go theorems":

Field theory: S-fold construction

[I. Garcia-Etxebarria, D. Regalado (2015/16); O. Aharony, M. Evtikhiev (2015); O. Aharony, Y. Tachikawa (2016); Y. Imamura, S. Yokoyama (2016)]

$$(\mathcal{N} = 3_{SYM}) \equiv (\mathcal{N} = 4_{SYM})/[(R - \text{sym.}) \times SL(2)_S].$$

How to evade "no-go theorems":

Field theory: S-fold construction

[I. Garcia-Etxebarria, D. Regalado (2015/16); O. Aharony, M. Evtikhiev (2015); O. Aharony, Y. Tachikawa (2016); Y. Imamura, S. Yokoyama (2016)]

$$(\mathcal{N} = 3_{SYM}) \equiv (\mathcal{N} = 4_{SYM})/[(R - \text{sym.}) \times SL(2)_S].$$

- Three invariant supercharges
- Strongly coupled theory (S=i)

Non-lagrangian, superconformal theory

$$\mathcal{N}=7$$
 W - Sugra: S-fold of $\mathcal{N}=8$ Sugra

$$\mathcal{N}=7$$
 W - Sugra: S-fold of $\mathcal{N}=8$ Sugra

Use double copy construction: Gravity = (Yang-Mills)²

$$\mathcal{N} = 7 \text{ W}$$
 - Sugra: S-fold of $\mathcal{N} = 8 \text{ Sugra}$

Use double copy construction: Gravity = (Yang-Mills)²

$$\mathcal{N} = 8 \text{ Sugra} \equiv (\mathcal{N} = 4 \text{ YM})^2$$

Two factors: massless spin-one vector multiplets of $\mathcal{N}=4$

Result: massless spin - two multiplet of $\mathcal{N}=8$

$$\mathcal{N}=7~\mathrm{W}$$
 - Sugra: S-fold of $\mathcal{N}=8~\mathrm{Sugra}$

Use double copy construction: Gravity = (Yang-Mills)²

$$\mathcal{N} = 8 \text{ Sugra} \equiv (\mathcal{N} = 4 \text{ YM})^2$$

Two factors: massless spin-one vector multiplets of $\mathcal{N}=4$

Result: massless spin - two multiplet of $\mathcal{N}=8$

$$\mathcal{N} = 7 \text{ W} - \text{Sugra} \equiv (\mathcal{N} = 4 \text{ YM}) \otimes (\mathcal{N} = 3 \text{ YM})$$

Two factors: massive spin-two multiplets of $\mathcal{N}=4$ and $\mathcal{N}=3$

Result: massive spin - four multiplet of $\,\mathcal{N}=7\,$

W - supergravity

W - supergravity

Higher spin theory

W - supergravity

Outline:

- II) Double copy construction of W-supergravity -N=7 W-supergravity
- III) Spin-four W superstring (closed string)
- IV) Spin-two W-superstring (open string)

Two conjectures

V) Conclusion and Outlook

II) Double copy construction of W - supergravity

$$QFT(\mathcal{N}_L) \otimes QFT(\mathcal{N}_R) = Sugra(\mathcal{N}_L + \mathcal{N}_R)$$

[Z. Bern, J. Carrasco, H. Johansson (2008/2010) Z. Bern, T. Dennen, J. Carrasco, H. Johansson (2010)]

Open string x Open string = Closed string

II) Double copy construction of W - supergravity

$$QFT(\mathcal{N}_L) \otimes QFT(\mathcal{N}_R) = Sugra(\mathcal{N}_L + \mathcal{N}_R)$$

[Z. Bern, J. Carrasco, H. Johansson (2008/2010) Z. Bern, T. Dennen, J. Carrasco, H. Johansson (2010)]

Open string \times Open string = Closed string

Operators/fields: $\Phi_{L+R} = \Phi_L \otimes \Phi_R$

 $\Phi_L,\,\Phi_R:\,$ Operators with scaling dimensions h_L,h_R

Require: $h_L = h_R = h$ $(m_L = m_R = m)$

4D Standard massless supergravity:

Tensor product of two massless vector multiplets (h = 1)

Supergravity: Massless Spin(2) = $V_{L,\mathcal{N}_L} \otimes V_{R,\mathcal{N}_R}$

4D Standard massless supergravity:

Tensor product of two massless vector multiplets (h = 1)

Supergravity: Massless Spin(2) =
$$V_{L,\mathcal{N}_L} \otimes V_{R,\mathcal{N}_R}$$

(i)
$$\mathcal{N}_L = \mathcal{N}_R = 4$$
 $\Rightarrow \mathcal{N} = 8 \text{ Sugra}$

(ii)
$$\mathcal{N}_L = 2, \, \mathcal{N}_R = 4 \quad \Rightarrow \mathcal{N} = 6 \text{ Sugra}$$

(iii)
$$\mathcal{N}_L = 1, \, \mathcal{N}_R = 4 \quad \Rightarrow \mathcal{N} = 5 \text{ Sugra}$$

(iv)
$$\mathcal{N}_L = 0, \, \mathcal{N}_R = 4 \quad \Rightarrow \mathcal{N} = 4 \text{ Sugra}$$

(v)
$$\mathcal{N}_L = \mathcal{N}_R = 2 \implies \mathcal{N} = 4 \text{ Sugra}$$

(vi)
$$\mathcal{N}_L = 1, \, \mathcal{N}_R = 2 \quad \Rightarrow \, \mathcal{N} = 3 \text{ Sugra}$$

(vii)
$$\mathcal{N}_L = 0, \, \mathcal{N}_R = 2 \implies \mathcal{N} = 2 \, \operatorname{Sugra}$$

(viii)
$$\mathcal{N}_L = \mathcal{N}_R = 1 \implies \mathcal{N} = 2 \text{ Sugra}$$

(ix)
$$\mathcal{N}_L = 0, \, \mathcal{N}_R = 1 \Rightarrow \mathcal{N} = 1 \text{ Sugra}$$

Non-standard W - supergravities in 4D :

We will need massive multiplets of \mathcal{N} - extended supersymmetric field theories:

[S. Ferrara, C. Savoy, B. Zumino (1981)]

Non-standard W - supergravities in 4D:

We will need massive multiplets of \mathcal{N} - extended supersymmetric field theories:

[S. Ferrara, C. Savoy, B. Zumino (1981)]

Massive spin-two Weyl super-multiplets:

$$W_{\mathcal{N}=4}: \text{Spin}(2) + \underline{8} \times \text{Spin}(3/2) + \underline{27} \times \text{Spin}(1) + \underline{48} \times \text{Spin}(1/2) + \underline{42} \times \text{Spin}(0)$$

States build USp(8) representations.

$$W_{\mathcal{N}=3}: \mathrm{Spin}(2) + \underline{6} \times \mathrm{Spin}(3/2) + (\underline{14} + \underline{1}) \times \mathrm{Spin}(1) + (\underline{14'} + \underline{6}) \times \mathrm{Spin}(1/2) + \underline{14} \times \mathrm{Spin}(0)$$

States build USp(6) representations.

$$W_{\mathcal{N}=2}: \text{Spin}(2) + \underline{4} \times \text{Spin}(3/2) + (\underline{5} + \underline{1}) \times \text{Spin}(1) + \underline{4} \times \text{Spin}(1/2) + \text{Spin}(0)$$

States build USp(4) representations.

$$W_{\mathcal{N}=1}$$
: Spin(2) + $\underline{2}$ × Spin(3/2) + Spin(1)

States build USp(2) representations.

One performs two types of simultaneous twists/projections:

R-symmetry:
$$Q^{\alpha;1,2,3} \to e^{-i\pi/k} Q^{\alpha;1,2,3}, \ Q^{\alpha;4} \to e^{3\pi/k} Q^{\alpha;4}$$

S-duality:
$$Q^{\alpha;1,2,3,4} \rightarrow e^{i\pi/k}Q^{\alpha;1,2,3,4}$$

$$\implies \mathcal{N}=4$$
 Susy is broken to $\mathcal{N}=3$.

One performs two types of simultaneous twists/projections:

R-symmetry:
$$Q^{\alpha;1,2,3} \to e^{-i\pi/k} Q^{\alpha;1,2,3}, \ Q^{\alpha;4} \to e^{3\pi/k} Q^{\alpha;4}$$

S-duality:
$$Q^{\alpha;1,2,3,4} \rightarrow e^{i\pi/k}Q^{\alpha;1,2,3,4}$$

$$\implies \mathcal{N}=4$$
 Susy is broken to $\mathcal{N}=3$.

Massless spin-one vector field $V_i(x,\theta)$ is not invariant under the S - fold projection.

One performs two types of simultaneous twists/projections:

R-symmetry:
$$Q^{\alpha;1,2,3} \to e^{-i\pi/k} Q^{\alpha;1,2,3}, \ Q^{\alpha;4} \to e^{3\pi/k} Q^{\alpha;4}$$

S-duality:
$$Q^{\alpha;1,2,3,4} \rightarrow e^{i\pi/k}Q^{\alpha;1,2,3,4}$$

$$\Longrightarrow \mathcal{N}=4$$
 Susy is broken to $\mathcal{N}=3$.

Massless spin-one vector field $V_i(x,\theta)$ is not invariant under the S - fold projection.

Invariant operators:
$$\Phi^{2p}=\mathrm{Tr}(V_{i\,1}ar{V}_{i\,2}\dots V_{i\,2p-1}ar{V}_{i\,2p})$$

$$(h=2p)$$

Lowest invariant operator: (h=2) massive spin - two super-Weyl multiplet:

$$W_{\mathcal{N}=3}: \operatorname{Spin}(2) + \underline{6} \times \operatorname{Spin}(3/2) + (\underline{14} + \underline{1}) \times \operatorname{Spin}(1) + (\underline{14'} + \underline{6}) \times \operatorname{Spin}(1/2) + \underline{14} \times \operatorname{Spin}(0)$$

 $W_{\mathcal{N}=3}$ is a true $\mathcal{N}=3$ supermultiplet.

W - supergravity = QFT(
$$\mathcal{N}_L$$
) \otimes QFT(\mathcal{N}_R = 3)

W - supergravity = QFT(
$$\mathcal{N}_L$$
) \otimes QFT(\mathcal{N}_R = 3)

Fields of lowest mass: massive spin-four super-multiplet:

Tensor product of two massive, spin-two Weyl multiplets:

W - supergravity = QFT(
$$\mathcal{N}_L$$
) \otimes QFT(\mathcal{N}_R = 3)

Fields of lowest mass: massive spin-four super-multiplet:

Tensor product of two massive, spin-two Weyl multiplets:

Closed string = Open string × Open string

$$\Phi_{L+R,\mathcal{N}_L+3}^4 = W_{L,\mathcal{N}_L} \otimes W_{R,\mathcal{N}_R=3}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\text{spin=4} \qquad \text{spin=2} \qquad \text{spin=2} \qquad \text{(+matter)}$$

All possible S-fold, W - supergravities:

(i)
$$\mathcal{N}_L = 4$$
, $\mathcal{N}_R = 3 \implies \mathcal{N} = 7 \text{ W} - \text{Sugra}$

(ii)
$$\mathcal{N}_L = \mathcal{N}_R = 3 \implies \mathcal{N} = 6 \text{ W} - \text{Sugra}$$

(iii)
$$\mathcal{N}_L = 2$$
, $\mathcal{N}_R = 3 \implies \mathcal{N} = 5 \text{ W} - \text{Sugra}$

(iv)
$$\mathcal{N}_L = 1$$
, $\mathcal{N}_R = 3 \implies \mathcal{N} = 4 \text{ W} - \text{Sugra}$

(v)
$$\mathcal{N}_L = 0$$
, $\mathcal{N}_R = 3 \implies \mathcal{N} = 3$ W - Sugra

Most prominent example: $\mathcal{N}=7$ W - supergravity:

$$\left(\operatorname{Spin}(2) + 8 \times \operatorname{Spin}(\frac{3}{2}) + 27 \times \operatorname{Spin}(1) + 48 \times \operatorname{Spin}(\frac{1}{2}) + 42 \times \operatorname{Spin}(0) \right)_{\mathcal{N}=4}$$

$$\otimes \left(\operatorname{Spin}(2) + 6 \times \operatorname{Spin}(3/2) + 15 \times \operatorname{Spin}(1) + 20 \times \operatorname{Spin}(1/2) + 14 \times \operatorname{Spin}(0) \right)_{\mathcal{N}=3}$$

$$= \left(\operatorname{Spin}(4) + \underline{14}_1 \times \operatorname{Spin}(\frac{7}{2}) + (\underline{90}_2 + \underline{1}) \times \operatorname{Spin}(3) + (\underline{350}_3 + \underline{14}_1) \times \operatorname{Spin}(\frac{5}{2}) \right)$$

$$+ (\underline{90}_2 + \underline{910}_4) \times \operatorname{Spin}(2) + (\underline{350}_3 + \underline{1638}_5) \times \operatorname{Spin}(\frac{3}{2}) + (\underline{2002}_6 + \underline{910}_4) \times \operatorname{Spin}(1)$$

$$+ (\underline{1430}_5 + \underline{1638}_5) \times \operatorname{Spin}(\frac{1}{2}) + \underline{2002}_6 \times \operatorname{Spin}(0) \right)_{\mathcal{N}=7}$$

Most prominent example: $\mathcal{N}=7$ W - supergravity:

$$\left(\operatorname{Spin}(2) + 8 \times \operatorname{Spin}(\frac{3}{2}) + 27 \times \operatorname{Spin}(1) + 48 \times \operatorname{Spin}(\frac{1}{2}) + 42 \times \operatorname{Spin}(0) \right)_{\mathcal{N}=4}$$

$$\otimes \left(\operatorname{Spin}(2) + 6 \times \operatorname{Spin}(3/2) + 15 \times \operatorname{Spin}(1) + 20 \times \operatorname{Spin}(1/2) + 14 \times \operatorname{Spin}(0) \right)_{\mathcal{N}=3}$$

$$= \left(\operatorname{Spin}(4) + \underline{14}_1 \times \operatorname{Spin}(\frac{7}{2}) + (\underline{90}_2 + \underline{1}) \times \operatorname{Spin}(3) + (\underline{350}_3 + \underline{14}_1) \times \operatorname{Spin}(\frac{5}{2}) \right)$$

$$+ (\underline{90}_2 + \underline{910}_4) \times \operatorname{Spin}(2) + (\underline{350}_3 + \underline{1638}_5) \times \operatorname{Spin}(\frac{3}{2}) + (\underline{2002}_6 + \underline{910}_4) \times \operatorname{Spin}(1)$$

$$+ (\underline{1430}_5 + \underline{1638}_5) \times \operatorname{Spin}(\frac{1}{2}) + \underline{2002}_6 \times \operatorname{Spin}(0) \right)_{\mathcal{N}=7}$$

Contains also spin-two and spin-3/2 states.

All massive states form representations of USp(14) Strongly coupled theory without Langrangian Can also be obtained directly by S-fold of $\mathcal{N}=8$

Precisely appears at first mass level in corresponding string construction.

Outline:

- II) Double copy construction of W-supergravity N=7 W-supergravity
- III) Spin-four W superstring (closed string)

IV) Spin-two W-superstring (open string)

- Two conjectures
- V) Conclusion and Outlook

III) W - Superstring construction (closed string)

Basic requirements for $\mathcal{N}=7$ in 4D:

Left-moving sector is untouched:

Type II: Four supercharges

Heterotic: Zero supercharges

Right-moving sector gets projected/twisted as in field theory:

Three invariant supercharges

No massless excitations

4D type II closed string in light cone gauge on

$$\mathbb{R}^{1,1} \times \mathbb{R}^2 \times T^6$$

4D type II closed string in light cone gauge on

$$\mathbb{R}^{1,1} \times \mathbb{R}^2 \times T^6$$

I complex uncompactified, transversal coordinate:

$$X(z,\bar{z}) = X_L(\bar{z}) + X_R(z)$$

4D type II closed string in light cone gauge on

$$\mathbb{R}^{1,1} imes \mathbb{R}^2 imes T^6$$

l complex uncompactified, transversal coordinate:

$$X(z,\bar{z}) = X_L(\bar{z}) + X_R(z)$$

3 complex compactified coordinates:

$$Z^{i}(z,\bar{z}) = Z_{L}^{i}(\bar{z}) + Z_{R}^{i}(z) \quad (i = 1,2,3)$$

S-fold projection in string theory:

I.) R-symmetry projection in the internal sector:

Projection by a discrete element of T-duality group SO(6,6) in the internal sector

Can be represented by discrete \mathbb{Z}_4 rotation on the internal coordinates:

$$Z_L^i o Z_L^i$$
 $Z_R^i o e^{-\frac{i\pi}{2}} Z_R^i$

Moduli have to be frozen at their fixed point values:

$$\tau = \rho = i$$

The internal space is a completely left-right asymmetric \mathbb{Z}_4 orbifold .

2.) S - duality projection in the space-time sector:

It is given by a discrete element of the (string) Geroch group.

[R. Geroch (1972); I. Bakas (1994)]

2.) S - duality projection in the space-time sector:

It is given by a discrete element of the (string) Geroch group.

[R. Geroch (1972); I. Bakas (1994)]

The Geroch group contains:

(i) Axion-dilaton transformations:

$$S = a + ie^{-2\phi}$$

$$SL(2)_S: \quad S \to \frac{\tilde{a}'S + \tilde{b}'}{\tilde{c}'S + \tilde{d}'}, \quad \tilde{a}'\tilde{d}' - \tilde{b}'\tilde{c}' = 1$$

[A. Font, L. Ibanez, D.L., F. Quevedo (1990); J.H. Schwarz, A. Sen (1993)]

(ii) Ehlers transformations - G-duality:

Four-dimensional, transversal, complex graviton field:

$$G = \frac{g_{12}}{g_{11}} + i \frac{\sqrt{\det g}}{g_{11}}$$

Large 4D diffeomorphisms (Ehlers transformation):

$$SL(2)_G: G \to \frac{\tilde{a}G + \tilde{b}}{\tilde{c}G + \tilde{d}}, \quad \tilde{a}\tilde{d} - \tilde{b}\tilde{c} = 1$$

(ii) Ehlers transformations - G-duality:

Four-dimensional, transversal, complex graviton field:

$$G = \frac{g_{12}}{g_{11}} + i \frac{\sqrt{\det g}}{g_{11}}$$

Large 4D diffeomorphisms (Ehlers transformation):

$$SL(2)_G: G \to \frac{\tilde{a}G + \tilde{b}}{\tilde{c}G + \tilde{d}}, \quad \tilde{a}\tilde{d} - \tilde{b}\tilde{c} = 1$$

Combined action of $SL(2)_S$ and $SL(2)_G$:

$$O(2,2)_{S,G} \simeq SL(2)_S \times SL(2)_G$$
 (Geroch group)

(ii) Ehlers transformations - G-duality:

Four-dimensional, transversal, complex graviton field:

$$G = \frac{g_{12}}{g_{11}} + i \frac{\sqrt{\det g}}{g_{11}}$$

Large 4D diffeomorphisms (Ehlers transformation):

$$SL(2)_G: G \to \frac{\tilde{a}G + \tilde{b}}{\tilde{c}G + \tilde{d}}, \quad \tilde{a}\tilde{d} - \tilde{b}\tilde{c} = 1$$

Combined action of $SL(2)_S$ and $SL(2)_G$:

$$O(2,2)_{S,G} \simeq SL(2)_S \times SL(2)_G$$
 (Geroch group)

 $SL(2)_S$ and $SL(2)_G$ also act on the transversal string coordinates X_L, X_R as certain in general left-right asymmetric rotations.

Particular discrete \mathbb{Z}_4 element:

$$X_L(\bar{z}) \to X_L(\bar{z}), \quad X_R(z) \to e^{-\frac{i\pi}{2}} X_R(z)$$

Dilaton and metric must be frozen: S = G = i .

This is a completely asymmetric \mathbb{Z}_4 rotation of the transversal, uncompactified coordinates.

Geroch transformation becomes T-duality when further compactifying to two dimensions

[I. Florakis, I. Garcia-Etxebarria, D. Lüst, D. Regalado (2018)]

64 + 64 invariant states at the first mass level:

64 + 64 invariant states at the first mass level:

$$Spin(2) + (\underline{14} + \underline{1}) \times Spin(1) + \underline{14} \times Spin(0)$$

64 + 64 invariant states at the first mass level:

$$\begin{array}{lll} \textbf{Bosons:} & b^i_{-1/2}b^j_{-1/2}b^I_{-1/2}|0\rangle\,, & b^i_{-1/2}b^I_{-1/2}b^J_{-1/2}|0\rangle\,, & b^I_{-1/2}b^J_{-1/2}b^K_{-1/2}|0\rangle\,, \\ & & b^i_{-3/2}|0\rangle\,, & b^I_{-3/2}|0\rangle\,, \\ & \alpha^i_{-1}b^j_{-1/2}|0\rangle\,, & \alpha^i_{-1}b^I_{-1/2}|0\rangle\,, & \alpha^I_{-1}b^i_{-1/2}|0\rangle\,, & \alpha^I_{-1}b^J_{-1/2}|0\rangle\,. \end{array}$$

$$Spin(2) + (\underline{14} + \underline{1}) \times Spin(1) + \underline{14} \times Spin(0)$$

Fermions:
$$(8)_c + (56)_c : b_{-1}^A |a\rangle$$
, $(8)_s + (56)_s : \alpha_{-1}^A |\dot{a}\rangle$

$$\underline{6} \times \text{Spin}(3/2) + (\underline{14'} + \underline{6}) \times \text{Spin}(1/2)$$

64 + 64 invariant states at the first mass level:

$$\begin{array}{lll} \textbf{Bosons:} & b^i_{-1/2}b^j_{-1/2}b^I_{-1/2}|0\rangle\,, & b^i_{-1/2}b^I_{-1/2}b^J_{-1/2}|0\rangle\,, & b^I_{-1/2}b^J_{-1/2}b^K_{-1/2}|0\rangle\,, \\ & & b^i_{-3/2}|0\rangle\,, & b^I_{-3/2}|0\rangle\,, \\ & \alpha^i_{-1}b^j_{-1/2}|0\rangle\,, & \alpha^i_{-1}b^I_{-1/2}|0\rangle\,, & \alpha^I_{-1}b^i_{-1/2}|0\rangle\,, & \alpha^I_{-1}b^J_{-1/2}|0\rangle\,. \end{array}$$

$$Spin(2) + (\underline{14} + \underline{1}) \times Spin(1) + \underline{14} \times Spin(0)$$

Fermions:
$$(8)_c + (56)_c : b_{-1}^A |a\rangle$$
, $(8)_s + (56)_s : \alpha_{-1}^A |\dot{a}\rangle$

$$\underline{6} \times \text{Spin}(3/2) + (\underline{14'} + \underline{6}) \times \text{Spin}(1/2)$$

This precisely agrees with the massive $\mathcal{N}=3$ Weyl multiplet.

Now we can consider the following type II S - fold:

$$(\mathcal{N} = 7_{II}) \equiv (\mathcal{N} = 8_{II})/(\mathrm{T - duality} \times \mathrm{Geroch})$$

- 3 invariant right-moving supercharges.
- 4 invariant left-moving supercharges.

- 7 invariant supercharges
- $S = i \Rightarrow \text{strongly coupled}$
- $G = i \Rightarrow \text{no massless graviton}$

Spectrum of type II $\mathcal{N}=7$ W - superstring theory:

- No massless states, no massless graviton & gravitini.
- Invariant states at first mass level:

Tensor product: (Fermionic left) x (fermionic right):

B:
$$[\text{Spin}(2) + 15 \times \text{Spin}(1) + 14 \times \text{Spin}(0)]_R \times [\text{Spin}(2) + 27 \times \text{Spin}(1) + 42 \times \text{Spin}(0)]_L$$
,
 $[6 \times \text{Spin}(3/2) + 20 \times \text{Spin}(1/2)]_R \times [8 \times \text{Spin}(3/2) + 48 \times \text{Spin}(1/2)]_L$
F: $[6 \times \text{Spin}(3/2) + 20 \times \text{Spin}(1/2)]_R \times [\text{Spin}(2) + 27 \times \text{Spin}(1) + 42 \times \text{Spin}(0)]_L$,
 $[\text{Spin}(2) + 15 \times \text{Spin}(1) + 14 \times \text{Spin}(0)]_R \times [8 \times \text{Spin}(3/2) + 48 \times \text{Spin}(1/2)]_L$

B:
$$[\mathrm{Spin}(4) + 91 \times \mathrm{Spin}(3) + 1000 \times \mathrm{Spin}(2) + 2912 \times \mathrm{Spin}(1) + 2002 \times \mathrm{Spin}(0)],$$

F: $[14 \times \mathrm{Spin}(\frac{7}{2}) + 364 \times \mathrm{Spin}(\frac{5}{2}) + 1988 \times \mathrm{Spin}(\frac{3}{2}) + 3068 \times \mathrm{Spin}(\frac{1}{2})]$

Massive spin - four multiplet of $\,\mathcal{N}=7\,$. Agrees with double copy construction.

Outline:

II) Double copy construction of W-supergravity - N=7 W-supergravity

III) Spin-four W - superstring (closed string)

IV) Spin-two W-superstring (open string)

Two conjectures

V) Conclusion and Outlook

IV) Spin-two W-superstring (open string)

Open strings on D3-branes:

Massless Yang-Mills gauge bosons + superpartners

Massive spin-two excitations + super partners

Massive spin-two Weyl supermultiplet.

Mass: $M_W = g_s M_s$

Closed strings in bulk:

Massless spin-two graviton + superpartners

Effective action of spin-two sector:

Weyl-square supergravity:

$$S = \int d^4x \sqrt{-g} \left(M_p^2 R + \frac{1}{g_W^2} W_{\mu\nu\rho\sigma} W^{\mu\nu\rho\sigma} + \dots \right)$$

Weyl tensor: $W_{\mu\nu\rho\sigma}=R_{\mu\nu\rho\sigma}+g_{\mu[\sigma}R_{\rho]\nu}+g_{\nu[\rho}R_{\sigma]\mu}+\frac{R}{3}g_{\mu[\rho}g_{\sigma]\nu}$

Propagating degrees of freedom: Bi-gravity theory:

Closed string: massless spin-two: metric $g_{\mu\nu}$

Open string: massive spin-two: 2nd. "metric" $w_{\mu\nu}$

4D Weyl-square W - supergravity exists for $\mathcal{N}=4,3,2,1,0$

One can also compute the fermioni as the scalar potential.

S-fold

Masses and couplings: $M_W = g_W M_p$

$$M_W = g_W M_p$$

In terms of string parameters:

$$M_p = M_s \sqrt{\mathcal{V}}$$
 , $g_W = \frac{g_s}{\sqrt{\mathcal{V}}} = \frac{g_{YM}^2}{\sqrt{\mathcal{V}}} < g_{YM}$

 \mathcal{V} : Internal volume

Massless limit: two massless spin-two states

$$M_W \to 0$$
: $g_W \to 0$ or $M_p \to 0$

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{g_W^2} W_{\mu\nu\rho\sigma} W^{\mu\nu\rho\sigma} + \dots \right)$$

In terms of string parameters:

$$M_s \to 0 , \mathcal{V} \to \infty \text{ or } g_s \to 0$$

Massless limit: two massless spin-two states

$$M_W \to 0$$
: $g_W \to 0$ or $M_p \to 0$

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{g_W^2} W_{\mu\nu\rho\sigma} W^{\mu\nu\rho\sigma} + \dots \right)$$

In terms of string parameters:

$$M_s \to 0 , \mathcal{V} \to \infty \text{ or } g_s \to 0$$

Theory becomes locally superconformal

Massless limit: two massless spin-two states

$$M_W \to 0$$
: $g_W \to 0$ or $M_p \to 0$

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{g_W^2} W_{\mu\nu\rho\sigma} W^{\mu\nu\rho\sigma} + \dots \right)$$

In terms of string parameters:

$$M_s \to 0 , \mathcal{V} \to \infty \text{ or } g_s \to 0$$

Theory becomes locally superconformal

Helicity zero component of spin-two state decouples

Conjecture about holography:

 $\mathcal{N}=4$ spin-two superconformal Weyl supergravity on a 4D boundary (D3-branes) is holographically dual to $\mathcal{N}=8$ spin-four W - supergravity in the 5 D bulk theory.

Conjecture about holography:

 ${\cal N}=4$ spin-two superconformal Weyl supergravity on a 4D boundary (D3-branes) is holographically dual to ${\cal N}=8$ spin-four W - supergravity in the 5 D bulk theory.

Spin-four operator on the boundary couples to spin-four field in the bulk:

$$J^{\mu\nu\rho\sigma} = \mathrm{ST}[W^{\mu\alpha\gamma\kappa}W^{\rho}_{\ \alpha\delta\kappa}W^{\nu}_{\ \beta\gamma\lambda}W^{\sigma\beta\delta\lambda}]$$

4D conformal dimension: $\Delta_J=8$

5D bulk mass:
$$m^2\alpha' = (\Delta + s - 2)(\Delta - s + 2 - d)$$

$$m^2 = 20/\alpha'$$

D. Klaewer, D.L., E. Palti, to appear

D. Klaewer, D.L., E. Palti, to appear

There cannot be more than one massless spin-two state in quantum gravity.

D. Klaewer, D.L., E. Palti, to appear

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$\Lambda_W = g_W M_p$$

$$\Lambda_W \to 0 \text{ for } g_W \to 0$$

D. Klaewer, D.L., E. Palti, to appear

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$\Lambda_W = g_W M_p$$

$$\Lambda_W \to 0 \text{ for } g_W \to 0$$

This cut-off is associated with an infinite tower of states above this scale.

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$\Lambda_W = g_W M_p$$

$$\Lambda_W \to 0 \text{ for } g_W \to 0$$

This cut-off is associated with an infinite tower of states above this scale.

New global symmetry of $\mathcal{L}\simeq rac{1}{g_W^2}W^2$ in this limit ?

D. Klaewer, D.L., E. Palti, to appear

There cannot be more than one massless spin-two state in quantum gravity.

New cut-off scale in quantum gravity:

$$\Lambda_W = g_W M_p$$

$$\Lambda_W \to 0 \text{ for } g_W \to 0$$

This cut-off is associated with an infinite tower of states above this scale.

New global symmetry of $\mathcal{L}\simeq rac{1}{g_W^2}W^2$ in this limit ?

Compare with WGC cut-off: $\Lambda_{WGC} = g_{YM} M_p > \Lambda_W$

- Open string realization for spin-two on D3-brane:

$$M_n \simeq \sqrt{n} g_W M_p$$

- Open string realization for spin-two on D3-brane:

$$M_n \simeq \sqrt{n} g_W M_p$$

- KK realization for spin-two.

- Open string realization for spin-two on D3-brane:

$$M_n \simeq \sqrt{n} g_W M_p$$

- KK realization for spin-two.

- Massless Weyl-square gravity:

Generic grounds state is de Sitter.

- Open string realization for spin-two on D3-brane:

$$M_n \simeq \sqrt{n} g_W M_p$$

- KK realization for spin-two.

- Massless Weyl-square gravity:

Generic grounds state is de Sitter.

This is censored by the de Sitter swampland conjecture!

G. Obied, H. Ooguri, L. Spodyneiko, C. Wafa, 2018

V) Summary

We have provided evidence for the existence of new N=7, W - supergravity and W - superstring theories.

Strongly coupled theories with frozen graviton! (Strongly coupled phase of gravity??)

- The internal space is non-geometric
 - modding out by T-duality.
- In 4D also modding out by S-duality
 - strongly coupled theory.
- In 4D also modding by large diffeomorphism massive, topological theory.

No proof (yet) that these theories are fully consistent and full-fledged string theories.

But there exist fully consistent 2D non-geometric string construction with N=(20,8) supercharges (and also with N=(32,0), N=(24,24) and N=(48,0)).

[I. Garcia-Etxebarria, I. Florakis, D.L., D. Regalado (2017)]

No proof (yet) that these theories are fully consistent and full-fledged string theories.

But there exist fully consistent 2D non-geometric string construction with N=(20,8) supercharges (and also with N=(32,0), N=(24,24) and N=(48,0)).

[I. Garcia-Etxebarria, I. Florakis, D.L., D. Regalado (2017)]

Other exotic, strongly coupled gravity theories:

(4,0) supergravity in six dimensions.

[C. Hull (2000)]

Two new conjectures about W - supergravity:

Holographic duality: 4D spin-two \longleftrightarrow 5D spin-four

New cut-off: spin-two scale

Should also hold for higher spins!

Two new conjectures about W - supergravity:

Holographic duality: 4D spin-two \longleftrightarrow 5D spin-four

New cut-off: spin-two scale

Should also hold for higher spins!

Thank you!