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undertaken  with many collaborators

Frederico Bonetti Wolfger Peel a  ers

Madalena Lemos Leonardo Rastelli

Pedro Liendo Balt  van Rees

Carlo Meneghelli . . .

many
more I haven't  worked old irectty . . .

Aim :  reshape  our  understand in  of
super conformal quantum field theories  in  an  abstract

, algebraic
language without  

any
deference to  oeakly coupled Lagrangian field theory .

The
program

has  multiple  strands -

tha °

Characterizing algebraic  structures associated to  various classes  of SCFTS
.

•

Using these to  constrain Klas sify spaces of SCFTS
.

• Combining tools to "

solve " to  whatever  extent possible  specific  models  of  interest
.
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Plan  of this talk

CFT and the  conformal bootstrap

Super conformal theories  and their  challenges

° Hidden  mathematical structures

I > Associated VO As

I > Super conformal deformation  quantization

° Conclusions / future  directions
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In limits  where  intrinsic length scales  in  a QFT can be  neglected
→ scale invariance

.

In  relativistic  systems , generically scale ⇒ conformal symmetry

Escher Picture

Conformal transformations act  as local rotation  t  rescaling .
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CFTS are generically strongly coupled when formulated via
, say ,  a path integral

-

✓ IDP ] exp DELHI

LIP ] -

- I fool
'

- 782 - ¥94 - . . .

Coupling constants all of 1 ) ; hard to compute ! I scale invariance obscured )

Even  worse
, many

CF Ts have  several
,  in  equivalent Lagrangian descriptions (duality )

.

Even  worse
,

some CF Ts have  no Lagrangian  description  at  all fu ill return to this ) .

This  motivates  us to seek  an approach that leverages  conformal invariance non perturbatively
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Local operators form  a Hilbert space H Csi
"  '

I  due to  conformal symmetry .

{ e.g. ,
2=10012 - viol theory : Orso

,
64.0

,
. . .

,
PII

"

Qui . . 0µF }

Product structure : O
,

kid Oz Kz ) =

, ,

C
,  z

" Ki - E) Ok KD

"

Operator Product Expansion
"

ROPE)

Converges
 in  correlation functions

( in  contrast to  similar  expansions  w/out  con formality )
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CF Ts as Algebraic Structures

Local operators form  a Hilbert space H Csi
"  '

I  due to  conformal symmetry .

{ e.g. ,
2=10012 - VIN theory : Orso

,
64.0

,
. . .

,
PII

"

Qui . . 0µF }

Product structure : O
,

kid Ozfxz ) =

.

C
,  z

" K
,

- E) OKKD

•

O
,

Kid

• Ozkz ) = C
,  zk f x

,
- xz ) • OKKD

K ✓
I

Determined by conformal symmetry

up to  overall normalization
,

"

OPE  coefficients "
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CFTS as Algebraic Structures

All correlation f ' 's fixed by OPE
, plus vanishing of  one - point functions

TOK ) = O unless ONE I

05
••

K
" I

04 •
K '

• Oz
K = C.zkkzdc.es "  '

Ks , )Cµu"
 '

kudc.es#Ks
,
)

K
,

K
'

,
k "

•

Oz

• O
,
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CFTS as Algebraic Structures

Self - consistency hell - defined ness of  correlates imposes associativity conditions on OPE -

Oo Oo
•

•

• Oz • Oz
o.O

, Kid =
..

O
, Kid
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9The Bootstrap

Itis  enough to  ensure  consistency of 4- pt . functions : 0,1×0021×00,6104

QIN Oaks ) 0,1×0 Oaks )

Ok

= Ok

K  K

area Ouko area area )

"

Crossing Symmetry
"

Old aspiration I circa 1970 's : Ferrara - Gatto - Grillo , Polyakov ) :

"
tSolve Cftsby solving crossing symmetry

( i.e
,

self - consistency should be  enough )
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Remarks
 on the ConformalBootstrap

D Generally ,
an  infinite  set  of  non - linear

, coupled functional equations in  infinitely many unknowns
.

-
Operator  scaling s

, spins ,
and OPE  coefficients

D Special situation  when  D= 2 : so 12,2 ) c Virasoro × Virasoro

^¥ finite  dimensional local conformal transformations

In this  case , crossing can reduce to  a finite  system of equations, leading to  notion  of

"

Rational CFT
"

Here  a  very
successful classification

program
 was carried out  in the late 1980 's

.

I > In d s 2 spacetime dimensions
,

no  such simplification possible ,
held

up progress
for  a long time

.
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Remarks
 on the ConformalBootstrap

° Major renewal of  effort  in  d > 2 following breakthrough of [ Rattazzi
, Bychkov,

Tonn is Vic hi 12008 ) I
.

°
"

Numerical Bootstrap
"

: Search for  inequalities for OPE  coefficients I operator  quantum numbers

following from  one la few 4 - pt functions
.

operator  scaling
→

dimension

Excluded

Allowed

←
operator scaling

dimension

° If  a CFT correlate  r  is
"

extremal " f saturates bounds) it  can  in principle be  reconstructed from the  same

data that
gave  rise to the bound

.
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At  an  abstract
,
formal level

,
SUSY just  extends conformal algebra sold

,
2) to  a larger Lie (super ) algebra :

d =3 : so 13,2 ) →

Osp
IN 14)

d-  - 4 :  soft
, 2) → su ( 2,21N )

d=5 :  so 15,2 ) → ff4 )

4=6 :  so 6. 2) →

Osp f 812N )

Nosuperconformalalgebras in  d > G fNahm ( 1978) ]

Extra fermionic spacetime symmetrygenerators { Q
,

S }

,
spacetime  spinors .
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° In d- - 3 I d -

- 4
, many

conventional SUSY
gauge

theories
give

 rise to SCF Ts

→ In 44
,

sometimes  admit Imultiple ! ) weak coupling expansions .

→ In 3d
, generally strongly coupled IR fixed pts .

° Often  in 4 d
,

no reasonable Lagrangian description .

e. g.  ,

"

Argyros - Douglas theories "

Iroughly ,
theories  of  massless electrons t  monopoles )

°

Many SCF Ts  in d- - 5 & d -

- 6 - predicted by string IM -

theory
- defy conventional wisdom !
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Surprising Predictions
from String IM -

theory

"

N - 145 Branes

In  d -

- G
,

start  arnon - interacting system

Lfp ] = ¥10912 I P ] = Mass
'

⇒ Into
 rmalizable

" M - brane  degrees
 of

freedom
"

deform by interactions :

I L n f
"

[ p
" ] =  Mass

'

quantum theory not  well - defined !

¥ Ek Mpi
"

Gd setts necessarily
"

non - Lagrangian
"

(

2,01
, Super conformal Field Theory Maximum  super  conformal symmetry in top  spacetime  dimension

.
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Algebraic Consequences of Supersymmetry

Fermionic  symmetry generators  act  as  differentials  compatible  with OPE :

I HI 'S
'  .  ' I → HI 'S "I . do

.
a - Os)

Jo J = O

•
QKI •

SO
, •

QK . )

I • = • t •

Oekz ) Oded 8021×0

80¥20
= Cizkfx ,  

- Xz ) •

OKEO ,  -02
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Cohomological
Reductions

 of Super conformal OPE Algebras

Associative OPE  inherited by co homological quotient -

H
*

f H
d - t

y ) =
Kerfor: HI 'S

" 'd → Hisd -

is)

ImId: HI 'S
" ) → Hisd - ' D

[ OK
a

= I OH t da O
'

red of ow -

- o }

Algebraic  structure can be  dramatically simpler here -

{ Q
,

I } - Hi
.

⇒ of
.
10h07 O

Here Hb is  a bosonic  symmetry generator, e.g ,
translations

,
rotations

,
dilatation s

.
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Simplest Case

If { Hb } - {spacetime translations }
. . .

[ or .IEfor .IE : Lota

Position  dependence trivialized -

Cijk f Xi - Xj ) → Cij
"

E IR or ①

OPE  reduces to (super) commutative
,

associative  algebra .

D

"

Chiral Rings
"

date to [ Lerche
,

Vafa
,

Warner 11989 ) ]

I > This  is the local algebraic  counterpart of Topological Quantum Field Theory FTQFTJ
.

Very important,
but  not immediately useful for bootstrap purposes .
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Meromorphic Reduction

ECB
,

Lemos
,

Liendo
,

Peelaers
,

Rastelli
,  van Rees I 2013 ) ]

d- - 4 NZZ SUSY

-  or -

Ofz , ,¥ ) • 02/4,75 )
D= G N 790 ) SUSY x . id •

a%,  per. .er .  ⇒er " "

Can identify cohomo logical reduction  with Q=Q× st
.

• Hb=o¥ → foitziitittafoifzitta,

• To
,

01×1=0 → Xs
,

. . . ,Xd=0
X
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Meromorphic Reduction ECB
,

Lemos
,

Liendo
,

Peel a  ers
,

Rastelli
,  van Rees I 2013 ) ]

Thus the  relevant operators I OPE  coefficients  define a Zd meromorphic OPE  algebra

a.k.a
.

a Vertex Operator Algebra f VOA )

a. ka
.

 a Chiral Algebra

VOA s still highly non - trivial
,

much more tractable than full OPE  algebras .

(roughly , complex  analysis  vs
.

 real analysis)

Often  can identify VOA  associated to  a

given
SCFT with

very
little  input fdue to  rigidity of VOA  s ) .

In other cases
,

itgets more complicated . . .
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× C
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•

•

•
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Class S fix ) Theories
C Gaiotto

,
Gaiotto - Moore - Neitzke ]

Gf

12,0dg
Sefton

IR
"

× C

§ EK ¥ rush
•

•

•

I un

4dN=2SCFT on 1124 ⇐

Gluing along punctures
metres

or .
lls

tq✓#•
Gauging global symmetries
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CCB
,

Peel a  ers
,

Rastelli
,  van Rees

1201403
SCFT - OPE  algebras parameterized by moduli space  of Riemann Surfaces fgeneric ally non -

Lagrangian) .

Passing to QEcohomology ,
we predict  a Zd TQFT valued in VOA  s fcf

.
T

.
Arakawa 's talk ) .

Now Arakawa has constructed these VOAS and shown they are uniquely determined by
several basic consistency conditions

,
which in turn  determines

many features of  "

mysterious
"

non .

Lagrangian theories
. . .

A triumph of mathematical physics !
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Super conformal Deformation Quantization
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e •  •  • i IRCIR's

0.rs , ) Qrs! O
,

By similar  mechanism to
previous  case ,  identify cohomdogical

reduction  with Hb = Is j  operators pinned to Rsc IR ?

= f •

→  ←

•  • y

0.rs , Ozrsz ) Grs , )

I •  •  • y. = f •  •

→  ←

• y

0.rs , Ozrsz ) Grs ) 0,60 Ozrsz ) Grs , )

c-

=/ T •  •  •• y

Oars , ) O
, Grs , )
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These  associativity conditions  define  an  auxiliary algebra problem for the same OPE  coefficients :

IFg ) → Fg = gf
Deformation  quantization : ( A

,
{

,
} ) Poisson  algebra leg ) → hey } = - Ig ,

fl

f lfgh } -

- leg 3h tghf.hu

th non - commutative
,

associative  algebra

f-xg-fgthhf.ge the ffg )
,

t . .
.

If *g) * h = f-  * Ig * h )

Solutions to  associativity for At  classified C Kontsevich 11997 ) ) up to ( infinite - dimensional )
"

gauge
" freedom to  change basis :

f- to f  th f
" 't ti f

' "
t .  - . for  each FEA
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In 3d SCFTS
, operators of interest  t OPE  coefficients  define

. . .

deformation  quantization  of
"

Higgs branch
nofvacua

"

singular symplectic variety associated to same theory
(analogous to  associated varieties  in Arakawa 's talk )

)

Numerical values  of OPE coefficients not invariant under
"

gauge transformations "

.

Prediction : there  are
" canonical bases " for these  quantum  algebras obeying Unusual

, physics - inspired

positivity / reality conditions
.

In  simplest  cases
,

these  extra  conditions uniquely determine the  algebra !(Recent  work  of Et  

ing
off Rains suggests this  

may
be  more general

)
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What  about the "

big
"

OPE  algebra ?
/

( 2,0 ) theory appears to be " extremal "

.

How to turn that  into  analytic strategy is the

question of the moment
.
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Conclusions & Outlook

° I have focused on the interesting mathematical objects foist  ructions that  arise from approaching
SCFTS algebraically .

° We predict  new algebraic structures in active areas ; powerful methods  can thus be leveraged to

analyze challenging ,
non - Lagrangian SC Fts at the level of these co homological

" shadows "

.

° Ongoing project :  characterize in full the  special properties inherited by the co homological algebras
with an  

eye
towards  classification .

° Big goal : synthesize the  various sub  algebras  and develop tools to  attack the "

big
" OPE  algebra .

(is the 12,0 ) algebra solvable ? )



Dante Sehr !


