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• Quantum entanglement. [Einstein-Podolsky-Rosen (1935)]

|Ψ〉 = |↑A〉|↓B〉−|↓A〉|↑B〉√
2

• “... spooky actions at a distance” [– Albert Einstein –]

• “I would not call [entanglement] one but rather the
characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought.”
[– Erwin Schrödinger –]
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Quantum entanglement; basic setup

• Quantum entanglement = What cannot be generated by Local
quantum operations and classical communications (LOCC):

ρ −→ (UA ⊗ UB) ρ (UA ⊗ UB)†

but not ρ −→ UAB ρU
†
AB.



Quantum entanglement; how to quantify it?

• The reduced density matrix by taking partial trace:

ρA := TrB (ρA∪B)

• von-Neumann entanglement entropy:

SA := −TrA(ρA log ρA)

• SA for pure state ρA∪B = |Ψ〉〈Ψ| decreases monotonically
under LOCC.



Quantum entanglement in many-body physics

H =
N∑
i=1

~p2
i

2m +
∑
i,j

V (|~ri − ~rj |)

• Characterization of quantum states beyond order parameter
paradigm

• Computational difficulties

• Renormalization group flow and quantum entanglement

• Non-equilibrium physics, eigenstate thermalization, quantum
information scrambling, etc.

• ....



Entanglement entropy in many-body systems

• Scaling of SA as a function of subsystem size A can tell
different phases, and computational difficulties.

E.g., Area/volume laws

SA ∼ AreaA, SA ∼ VolA



Examples

• (1+1)D CFT

SA = c

3 log `

• (2+1)D quantum spin liquid
(topologically ordered
phases)

SA = const. `
ε
− γ

[Jiang-Wang-Balents (12)]



Can we measure it experimentally?

• [R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. N. Rispoli,
M. Greiner, Nature (2015)] [AM Kaufman, ME Tai, A Lukin, M
Rispoli, R Schittko, PM Preiss, M Greiner, Science (2016)]
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Entanglement in mixed states?

• How to quantify quantum entanglement between A and B
when ρA∪B is mixed ? E.g., finite temperature, A,B is a part
of bigger system.

• The entanglement entropy is an entanglement measure only
for pure states. For mixed states, it is not monotone under
LOCC.



Partial transpose (bosonic case)

• Definition: for an operator M , its partial transpose MTB is

〈e(A)
i e

(B)
j |M

TB |e(A)
k e

(B)
l 〉 := 〈e(A)

i e
(B)
l |M |e

(A)
k e

(B)
j 〉

where |e(A,B)
i 〉 is the basis of HA,B.



Partial transpose and entanglement



Partial transpose and quantum entanglement

• Bell pair:|Ψ〉 = 1√
2 [|01〉 − |10〉]

ρ = |Ψ〉〈Ψ| = 1
2[|01〉〈01|+ |10〉〈10| − |01〉〈10| − |10〉〈01|]

• Partial transpose:

ρT2 = 1
2[|01〉〈01|+ |10〉〈10| − |00〉〈11| − |11〉〈00|]

• Entangled states are badly affected by partial transpose:
Negative eigenvalues:

{λi} = Spec(ρTB ) = {1/2, 1/2, 1/2,−1/2}

• C.f. For a classical state: ρ = 1
2 [|00〉〈00|+ |11〉〈11|] = ρTB



Partial transpose and Entanglement negativity

• Entanglement negativity and logarithmic negativity, using
partial transpose,

N (ρ) :=
∑
λi<0
|λi| =

(
||ρTB ||1 − 1

)
/2,

E(ρ) := log(2N (ρ) + 1) = log ||ρTB ||1.

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner
(02), Plenio (05) ...]

• For mixed states, Negativity extracts quantum correlations
only.

• The logarithmic negativity is an entanglement monotone (but
not convex). [Plenio (2005)]



Partial transpose and negativity in fermionic systems

• Partial transpose is useful to detect entanglement in
many-body states.

• How about fermion systems? E.g., the Kitaev chain

• Collaborators: Hassan Shapourian (U Chicago), Ken Shiozaki
(RIKEN)

• Based on: arXiv:1611.07536; 1804.08637; 1807.09808



The Kitaev chain

• The Kitaev chain

H =
∑
j

[
− tc†jcj+1 + ∆c†j+1c

†
j + h.c.

]
− µ

∑
j

c†jcj

• Phase diagram: there are only two phases:

• Topologically non-trivial phase is realized when 2|t| ≥ |µ|.



Majorana end states

• Characteristic to the topological SC phase are zero-energy
states at each end.

• The end state is a Majorana fermion. γ† = γ



Ground state; Majorana dimers

• Fractionalizing an electron into two Majoranas:

cx = cLx + icRx , c†x = cLx − icRx .

Ground state consists of “Majorana dimers”



Experiments

• Majorana fermions are useful for topological quantum
computation.

• Proximitized spin-orbit quantum wire [Lutchyn et al (10), Oreg
et al (10), Mourik et al (12), ... ], magnetic adatomes on the
surface of an s-wave superconductor [Nadj-Perge et al (14)]

Zero biased peak



Negativity in the Kitaev chain

• log negativity E for two adjacent intervals I1 and I2

• Wave function;

Ψ(s1, s2, · · · ) =
∑

{in=1,··· }
As1
i1i2

As2
i2i3

As3
i3i4
· · · sa =↑, ↓



• Overlap (“Partition function”):

• Reduced density matrix:

Full transpose: Partial transpose:



Issues in fermionic systems
• Log negativity E for two adjacent intervals I1 and I2 of equal

length. (L = 4` = 8)

• (Blue circles and Red corsses) is computed by Jordan-Wigner
+ bosonic partial transpose

• Log negativity fails to capture Majorana dimers.



Issues in fermionic systems (2)

• Partial transpose of bosonic Gaussian states is still Gaussian;
easy to compute by using the correlation matrix

• Partial transpose of fermionic Gaussian states are not
Gaussian

• ρT1 can be written in terms of two Gaussian operators O±:

ρT1 = 1− i
2 O+ + 1 + i

2 O−

• Negativity estimators/bounds using Tr [
√
O+O−] [Herzog-Y.

Wang (16), Eisert-Eisler-Zimborás (16)]
• Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]



Partial transpose for fermions – our definition

[Shiozaki-Shapourian-SR (16)]

• Fermion operator algebra does not trivially factorize for
HA ⊗HB.

• In Fock space basis |{nj}A, {nj}B〉,

〈{n}A, {n}B |ρTB |{m}A, {m}B〉
= (−1)φ({n},{m})〈{n}A, {m}B |ρ|{m}A, {n}B〉

• C.f. fermionic matrix product states [Bultinck et al]

• Gaussian states stay Gaussian under our partial transpose;
very computable



Comparison with previous definitions

[Shiozaki-Shapourian-SR (16)]

• (Blue circles and Red crosses): Old (bosonic) definition

• (Green triangles and Orange triangles) Our definition;

• At critical point: agrees with CFT prediction
[Calabrese-Cardy-Tonni].



Motivation behind our construction

• Partial transpose can change the topology of spacetime: path
integral on an unoriented spacetime [Pollmann-Turner,
Calabrese-Cardy-Tonni, Shiozaki-SR]

Tr (e−βH) =
∫
D[φ]e−S(M×S1

β),

Tr (ρρTB ) =
∫
D[φ]e−S(?)

• For topological phases, path integral = topological invariant.

• Once we “calibrate” the definition of TB, one can use it for
any system.



Partial transpose and topological invariant

• Step 1: The reduced density matrix for an interval I,
ρI := TrĪ |Ψ〉〈Ψ|.

• Step 2: Bipartition I into two adjacent intervals, I = I1 ∪ I2.

• Step 3: Take fermionic partial transpose acting only on I1;
ρI −→ ρT1

I .

• Step 4: The invariant is given by the phase of:

Z = Tr(ρIρ
T1
I ) = e2πiν/8.



Numerics

• The phase of Z is quantized to the 8th root of unity.
Consistent with Z8 classification: [Fidkowski-Kitaev(10)]

• Similar constructions of many-body topological invariants for
other fermionic SPT phases; e.g. Z2 time-reversal symmetric
topological insulators.



What does the topological invariant computes?
Reduced density matrix Partial transpose:

Topological invariant:



It computes the partition function on unoriented surface
• The invariant simulates the path integral on real projective

plane RP 2 : [Shiozaki-Ryu (16)]

= = = =

• The effective action prediction: Z(RP 2, η) = e2πiBrown(η)/8

where η is one of two Pin− structures on RP 2. [Kapustin et
al (14-15), Freed-Hopkins (14-15), Witten (15), and others]



Monotoncity under LOCC

• For bosonic systems, negativity is LOCC monotone

• I.e., what cannot be generated by LOCC = “quantum
entanglement”.

• von-Neumann entanglement entropy decreases monotonically
at T = 0, but not at T > 0.



Monotoncity under LOCC

• Our fermionic version of partial transpose, and negativity, is it
a good entanglement measure? Is it monotone under LOCC?

• In [Shapourian-SR (18)], we proved that fermionic
entanglement negativity is monotone, if LOCC are taken to be
fermion number parity preserving.

• Our negativity does not increase under: local unitaries, adding
ancilla, local projective measurements, tracing ancilla



Summary

• Introduced partial transpose for fermionic systems. “Fermionic
partial transpose”

• The (log) negativity using the fermionic partial transpose can
capture the formation of Majorana dimers in the Kitaev chain.

• Proved that the fermionic negativity is a proper entanglement
measure for fermionic systems.

• Partial transpose can be used to construct topological
invariants of topological phases of matter.



Future problems

• Can we measure entanglement negativity and topological
invariants?

• How useful is entanglement negativity (over other quantities)?
Topological order, non-equilibrium phenomena
(thermalization, quantum chaos, etc.)

• Geometric/holographic interpretation of negativity?
• C.f. Holographic entanglement entropy formula
• Connection to entanglement wedge cross section?

“Entanglement negativity and minimal entanglement wedge
cross sections in holographic theories”, Jonah Kudler-Flam and
SR, arXiv:1808.00446



Holographic quantum states

• Holographic entanglement
entropy formula

SA = Area γA
4GN



Related to Entanglement wedge?
• Entanglement wedge = the bulk region corresponding to the

reduced density matrix on the boundary [Headrick et al (14),
Jafferis-Suh (14), Jafferis-Lewkowycz-Maldacena-Suh (15), ...]

• Minimal entanglement wedge cross section and negativity
[Kudler-Flam, SR, arXiv:1808.00446]

• C.f. Entanglement of purification: [Takayanagi-Umemoto(17),
Nguyen-Devakul-Halbasch-Zaletel-Swingle (17)]



Perfect tensor holographic error correcting code
• Computed/explored entanglement negativity in a tensor

network model of holographic duality. [Almheiri-Dong-Harlow
(15), Harlow (17), Pastawski-Yoshida-Harlow-Preskill(15)]

• This tensor network acts as an error correcting code encoding
multiple “bulk” logical qubits into multiple “boundary”
physical qubits

• Captures many aspects of holography; black holes, bulk
reconstruction, subregion duality, holographic entanglement
entropy, etc.



• It is crucial/enough to look at “smallest” possible network:

• In this case, the negativity is given by

E(ρA) = log(|A|).

• Compared to the entanglement entropy:

S(ρA) = log(|A|) + S(ρ̃),

the negativity does not pick up the bulk contribution.



Negativity in perfect tensor holographic code

• Negativity avoids horizon.



9-qutrit tensor network

• Simplest model: 9-qutrit model

• Tracing out uninteresting degrees of freedom to get effective
error correcting code:



Tensor network

• The traced degrees of freedom behave as bulk indices;
negativity will not detect them.

• The negativity is given by the minimal entanglement wedge
cross section



AdS3/CFT 2

• How about negativity in the full fledged AdS/CFT? No time
to discuss ... but rather interesting.

• In holographic code models; many quantities are “degenerate”;
mutual information, negativity, entanglement of purification.

• Back reaction is expected; since, e.g., in certain case,
negativity is Renyi entropy at n = 1/2 [Dong(16)]

• See our paper for more detailed comparisons.


