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e Quantum entanglement. |[Einstein-Podolsky-Rosen (1935)]
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“

e .. spooky actions at a distance” |- Albert Einstein —|

e “l would not call [entanglement] one but rather the
characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought.
[~ Erwin Schrédinger -]
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Quantum entanglement; basic setup
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e Quantum entanglement = What cannot be generated by Local
quantum operations and classical communications (LOCC):

p— (Ua®@Up)p(Us @ Up)'
but not p — UABpUJ;B.



Quantum entanglement; how to quantify it?

e The reduced density matrix by taking partial trace:

pa = Trg (pauB)

PAUB D Trp (pauB) |_.—_|

e von-Neumann entanglement entropy:

Sa:=—Tra(palogpa)

e Sy for pure state paup = |¥) (| decreases monotonically
under LOCC.



Quantum entanglement in many-body physics

X
H=Y 204 V(7 - 7))
= 2m i,

Characterization of quantum states beyond order parameter
paradigm

Computational difficulties
Renormalization group flow and quantum entanglement

Non-equilibrium physics, eigenstate thermalization, quantum
information scrambling, etc.



Entanglement entropy in many-body systems

e Scaling of S4 as a function of subsystem size A can tell
different phases, and computational difficulties.

E.g., Area/volume laws

Sa~ Areas, Sa~ Voly



Examples

e (1+1)D CFT

c
Sa = glogﬁ

¢ (241)D quantum spin liquid
(topologically ordered
phases)

l
Sa = const.— —
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Can we measure it experimentally?

e [R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. N. Rispoli,
M. Greiner, Nature (2015)] [AM Kaufman, ME Tai, A Lukin, M
Rispoli, R Schittko, PM Preiss, M Greiner, Science (2016)]
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Entanglement in mixed states?

e How to quantify quantum entanglement between A and B
when paup is mixed 7 E.g., finite temperature, A, B is a part
of bigger system.

e The entanglement entropy is an entanglement measure only
for pure states. For mixed states, it is not monotone under

LOCC.



Partial transpose (bosonic case)

e Definition: for an operator M, its partial transpose M5 is
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where |e,§A’B)> is the basis of H 4 p.
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Partial transpose and entanglement




Partial transpose and quantum entanglement

Bell pair:|¥) = % [101) — |10)]
p=UN¥| = %[|01><01| + [10)(10] — [01)(10] — [10)(01]

Partial transpose:

p = S[01)(01] + [10)(10] ~ [00){11] ~ [11)(00]

Entangled states are badly affected by partial transpose:
Negative eigenvalues:

[N} = Spec(p™) = {1/2,1/2,1/2,1/2}

C.f. For a classical state: p = 1[|00)(00] + [11)(11[] =



Partial transpose and Entanglement negativity

Entanglement negativity and logarithmic negativity, using
partial transpose,

N(p) =3 il = (II7" [ — 1) /2,

A <0
E(p) :=1og(2N (p) + 1) = log||p"?||1.

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner
(02), Plenio (05) ...]

For mixed states, Negativity extracts quantum correlations
only.

The logarithmic negativity is an entanglement monotone (but
not convex). [Plenio (2005)]



Partial transpose and negativity in fermionic systems

Partial transpose is useful to detect entanglement in
many-body states.

e How about fermion systems? E.g., the Kitaev chain

Collaborators: Hassan Shapourian (U Chicago), Ken Shiozaki
(RIKEN)

Based on: arXiv:1611.07536; 1804.08637; 1807.09808



The Kitaev chain

e The Kitaev chain

H= Z{ tcc]_HJrAc_Hc +hC:|7‘LLZC;Cj
J

i—=1 Jj j+1

e Phase diagram: there are only two phases:

Topological * Trivial ||
It|

lul = 2l¢|

e Topologically non-trivial phase is realized when 2|t| > |u|.



Majorana end states

e Characteristic to the topological SC phase are zero-energy
states at each end.

(k)
gap I % e=0 %
lie] > 2[t] Il < 2[¢]

/\’Y

e The end state is a Majorana fermion. ~f =~




Ground state; Majorana dimers

e Fractionalizing an electron into two Majoranas:

c, = cg% + z'cf, :TE = cw - icf.
L R L
Cx Cy w—}—l

Ground state consists of “Majorana dimers”



Experiments

e Majorana fermions are useful for topological quantum
computation.

e Proximitized spin-orbit quantum wire [Lutchyn et al (10), Oreg
et al (10), Mourik et al (12), ... |, magnetic adatomes on the
surface of an s-wave superconductor [Nadj-Perge et al (14)]

RESEARCH ARTICLES

TOPOLOGICAL MATTER

Observation of Majorana fermions in
Delft experiments ferromagnetic atomic chains on
25 MAY 2012 VOL3% SCIENCE. wwscioncomg og a superconductor
Signatures of Majorana Fermions in
Hybrid Superconductor-Semiconductor
Nanowire Devices

Folov? 5. R, Pisar € .. M. Bakkrs L . Koumenboren't

[Zero biased peak |

!
[Yu-Shiba-Rusinov in-gap states (Fig. 1, C and D)




Negativity in the Kitaev chain

e log negativity £ for two adjacent intervals I; and I
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e Overlap (“Partition function”):

(w|w)

e Reduced density matrix:

p
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SR
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Issues in fermionic systems

e Log negativity £ for two adjacent intervals I; and I3 of equal
length. (L = 4¢ = 8)
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e (Blue circles and Red corsses) is computed by Jordan-Wigner
+ bosonic partial transpose

e Log negativity fails to capture Majorana dimers.



Issues in fermionic systems (2)

e Partial transpose of bosonic Gaussian states is still Gaussian;
easy to compute by using the correlation matrix

e Partial transpose of fermionic Gaussian states are not
Gaussian
e p' can be written in terms of two Gaussian operators O :

11— 1+
T o)
5 U+t

o Negativity estimators/bounds using Tr [\/O;+O_] [Herzog-Y.
Wang (16), Eisert-Eisler-Zimboras (16)]
e Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]

O_

p



Partial transpose for fermions — our definition

[Shiozaki-Shapourian-SR (16)]
Fermion operator algebra does not trivially factorize for

Ha Q@ Hp.

In Fock space basis [{n;}4,{n;}B),

({n}a, {n}Blp"" {m}a, {m}5)
= (1) ({n}a, {mY slol{m} a, {n} )

C.f. fermionic matrix product states [Bultinck et al]

Gaussian states stay Gaussian under our partial transpose;
very computable



Comparison with previous definitions

[Shiozaki-Shapourian-SR (16)]
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e (Blue circles and Red crosses): Old (bosonic) definition
e (Green triangles and Orange triangles) Our definition;

e At critical point: agrees with CFT prediction
[Calabrese-Cardy-Tonni].



Motivation behind our construction

e Partial transpose can change the topology of spacetime: path
integral on an unoriented spacetime [Pollmann-Turner,
Calabrese-Cardy-Tonni, Shiozaki-SR]

Te () = [ Dlglem 01,
Tr (pp'?) = / Digle*)

e For topological phases, path integral = topological invariant.

e Once we “calibrate” the definition of T, one can use it for
any system.



Partial transpose and topological invariant
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e
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Step 1: The reduced density matrix for an interval I,
pr = Try| W) (¥|.

Step 2: Bipartition I into two adjacent intervals, I = I1 U Is.

Step 3: Take fermionic partial transpose acting only on Iy;
pr— ppt.

Step 4: The invariant is given by the phase of:

Z =Tr(pyp;) = /5.



Numerics

@ D+ Refl,
¥ BDI

Topological Trivial

e The phase of Z is quantized to the 8th root of unity.
Consistent with Zg classification: [Fidkowski-Kitaev(10)]

e Similar constructions of many-body topological invariants for
other fermionic SPT phases; e.g. Zs time-reversal symmetric
topological insulators.



What does the topological invariant computes?

Reduced density matrix Partial transpose:
p U p" Ut
T T
T 1T T T |
A R I I,

Topological invariant:
Tr(pUrp" UY)

- 1 Rl
1

U, p" Ut

fi
R




It computes the partition function on unoriented surface

e The invariant simulates the path integral on real projective
plane RP? : [Shiozaki-Ryu (16)]

RP?

SQ

52

o The effective action prediction: Z(RP?2, 1) = ¢>mBrown(n)/8
where 7 is one of two Pin_ structures on RP2. [Kapustin et
al (14-15), Freed-Hopkins (14-15), Witten (15), and others]



Monotoncity under LOCC

Ha Hp
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e For bosonic systems, negativity is LOCC monotone

e |.e., what cannot be generated by LOCC = “quantum
entanglement”.

e von-Neumann entanglement entropy decreases monotonically
at T'=0, but not at T' > 0.



Monotoncity under LOCC

Ha Hp
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e Our fermionic version of partial transpose, and negativity, is it
a good entanglement measure? Is it monotone under LOCC?

e In [Shapourian-SR (18)], we proved that fermionic
entanglement negativity is monotone, if LOCC are taken to be
fermion number parity preserving.

e Our negativity does not increase under: local unitaries, adding
ancilla, local projective measurements, tracing ancilla



Summary

Introduced partial transpose for fermionic systems. “Fermionic
partial transpose”

The (log) negativity using the fermionic partial transpose can
capture the formation of Majorana dimers in the Kitaev chain.

Proved that the fermionic negativity is a proper entanglement
measure for fermionic systems.

Partial transpose can be used to construct topological
invariants of topological phases of matter.



Future problems

e Can we measure entanglement negativity and topological
invariants?

e How useful is entanglement negativity (over other quantities)?
Topological order, non-equilibrium phenomena
(thermalization, quantum chaos, etc.)

o Geometric/holographic interpretation of negativity?

e C.f. Holographic entanglement entropy formula

e Connection to entanglement wedge cross section?
“Entanglement negativity and minimal entanglement wedge
cross sections in holographic theories”, Jonah Kudler-Flam and

SR, arXiv:1808.00446



Holographic quantum states

extra dimension
(RG direcftion)

— 2)D AdS spa -
boundary

(d+1)D CFT

e Holographic entanglement
entropy formula

Minimal Surface

_ Areaya

Sa 4G N



Related to Entanglement wedge?

e Entanglement wedge = the bulk region corresponding to the
reduced density matrix on the boundary [Headrick et al (14),
Jafferis-Suh (14), Jafferis-Lewkowycz-Maldacena-Suh (15), ...]

A A

e Minimal entanglement wedge cross section and negativity
[Kudler-Flam, SR, arXiv:1808.00446]

e C.f. Entanglement of purification: [Takayanagi-Umemoto(17),
Nguyen-Devakul-Halbasch-Zaletel-Swingle (17)]



Perfect tensor holographic error correcting code

o Computed/explored entanglement negativity in a tensor
network model of holographic duality. [Almheiri-Dong-Harlow
(15), Harlow (17), Pastawski-Yoshida-Harlow-Preskill(15)]
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e This tensor network acts as an error correcting code encoding
multiple “bulk” logical qubits into multiple “boundary”
physical qubits

e Captures many aspects of holography; black holes, bulk
reconstruction, subregion duality, holographic entanglement
entropy, etc.



e It is crucial/enough to look at “smallest” possible network:

A(
/_\ A
—— -
A Ay A
||
Ua
|
A [X) a2,4

e In this case, the negativity is given by
E(pa) = log(|A]).
o Compared to the entanglement entropy:

S(pa) = log(|A]) + 5(p),

the negativity does not pick up the bulk contribution.



Negativity in perfect tensor holographic code

e Negativity avoids horizon.

A A



O-qutrit tensor network

e Simplest model: 9-qutrit model

A

c

e Tracing out uninteresting degrees of freedom to get effective
error correcting code:

A 8

A

- g



Tensor network

e The traced degrees of freedom behave as bulk indices;
negativity will not detect them.

e The negativity is given by the minimal entanglement wedge
cross section

\

o e ®

Negativity 0 log(3)
Entanglement Wedge 0 log(3)
Mutual Information log(3) — S(p) 21og(3)




AdS3/ CFT,

How about negativity in the full fledged AdS/CFT? No time
to discuss ... but rather interesting.

In holographic code models; many quantities are “degenerate”;
mutual information, negativity, entanglement of purification.
@Back reaction is expected; since, e.g., in certain case,
negativity is Renyi entropy at n = 1/2 [Dong(16)]

See our paper for more detailed comparisons.



