Skein module valued open GW invariants and large N duality

Tobias Ekholm Uppsala Univ and Inst Mittag-Leffler, Sweden

> WPC symposium, Nov 7-9, 2018 DESY Hamburg

Knot invariants from Chern-Simons theory

Connections to topological string

Large N duality – from open to closed

The mechanism – stretching the complex structure

Further consequences, quantum curves, refinement . . .

$$CS(A) = \int_{M} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right)$$

$$Z_{cs}(M) = \int DA e^{\frac{ik}{4\pi}CS(A)}$$

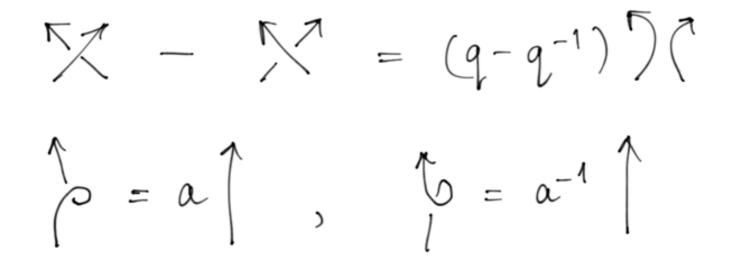
Expand around flat connection
in Yk.

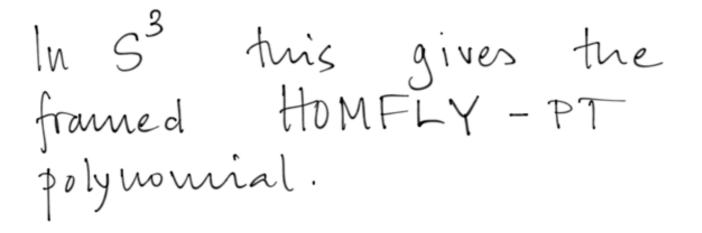
KCM knot or link. $\langle K \rangle = \int \partial A e^{\frac{ik}{4\pi}CS(A)} tr_{g}(Hol_{A}(K))$ Following Witten we compute by cut & paste: gives $\dim H = 2$

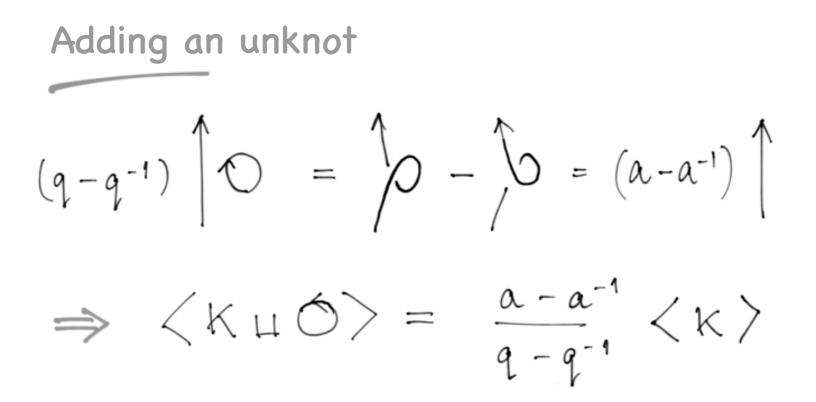
Skein relation $\alpha \sum_{k=1}^{\infty} - \beta \sum_{k=1}^{\infty} = \gamma \int ($ Constants for U(N) $q^{N} = q^{-N} = (q - q^{-1})^{n}$

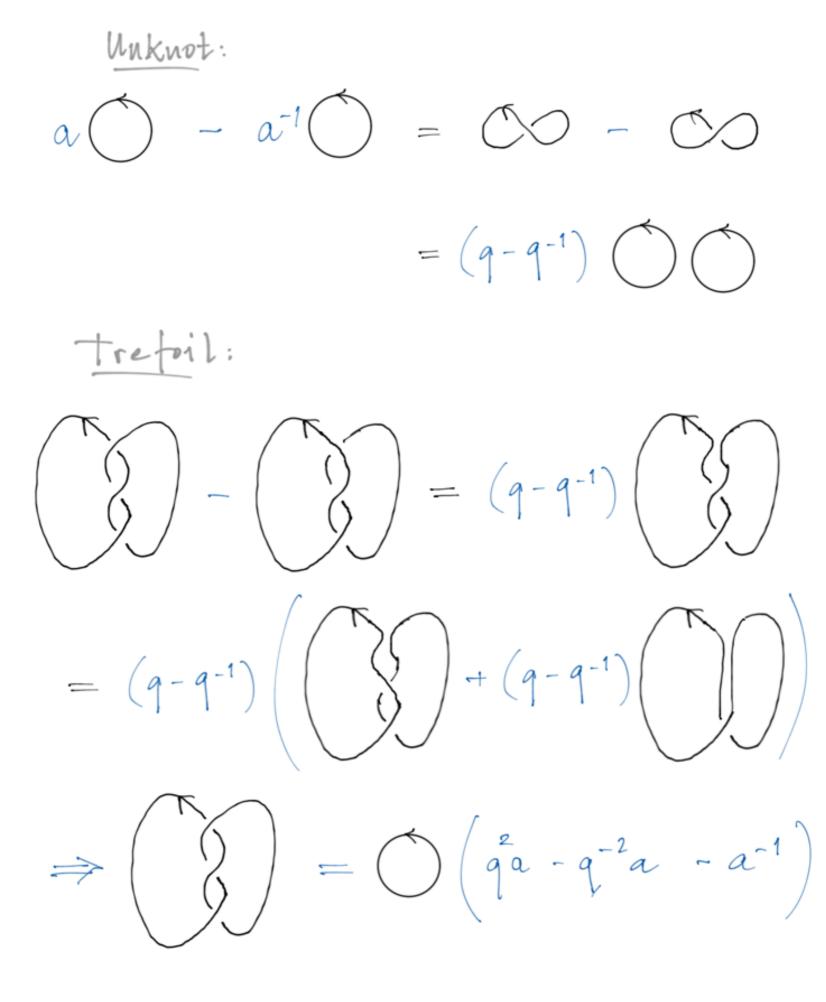
$$q = \frac{2\pi i}{k + N}$$

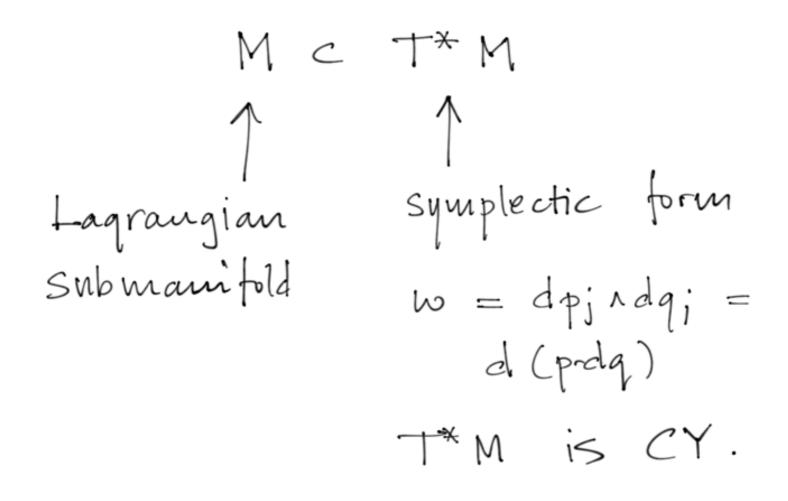
Framed skein module



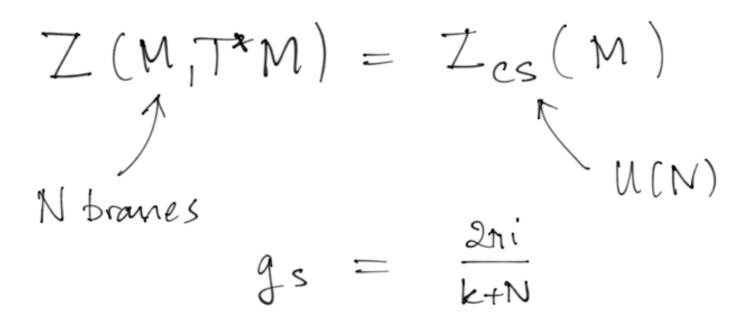


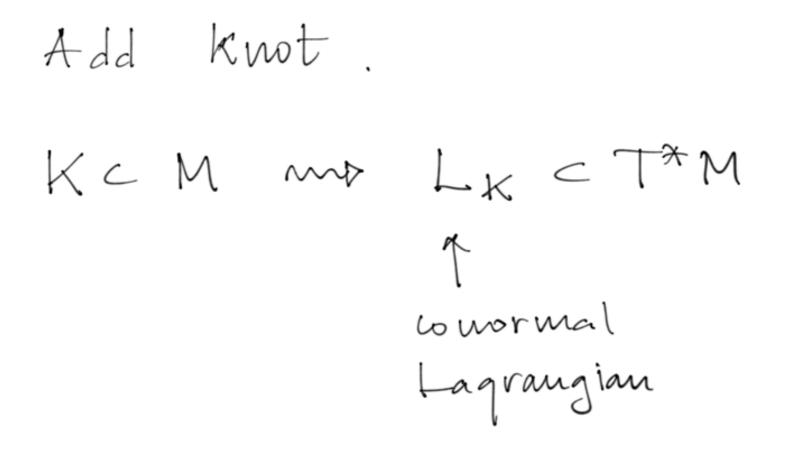


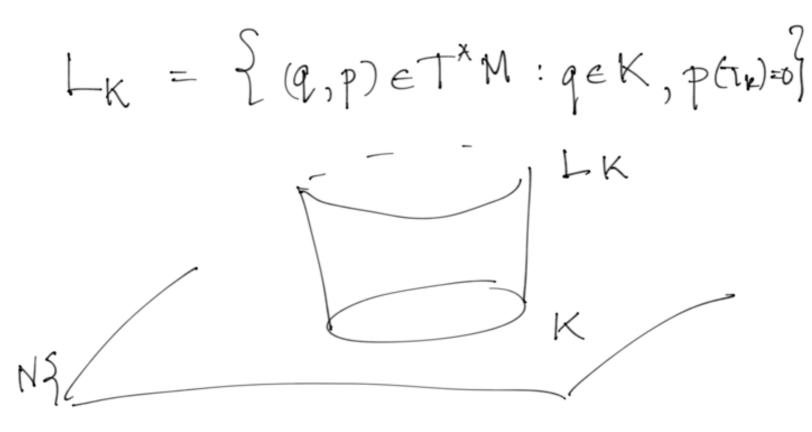




In topological string this approximation is exact (Witten via string field theory)



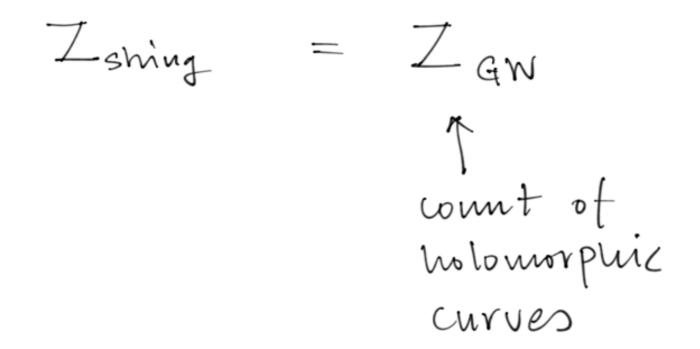




$$Z_{K} = \sum_{n \ge 1} H_{n} e^{n\chi}$$

 f
counts shing
states in
 $n\chi \in H_{1}(L_{K})$.

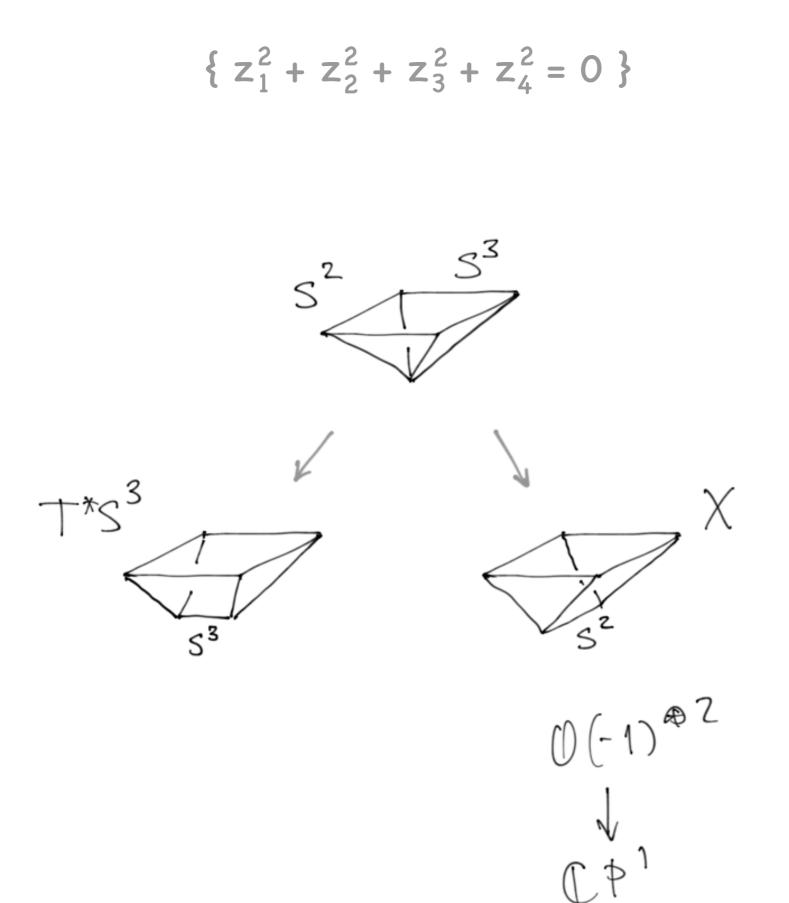
Open topologial string localizes on holomorphic curves and

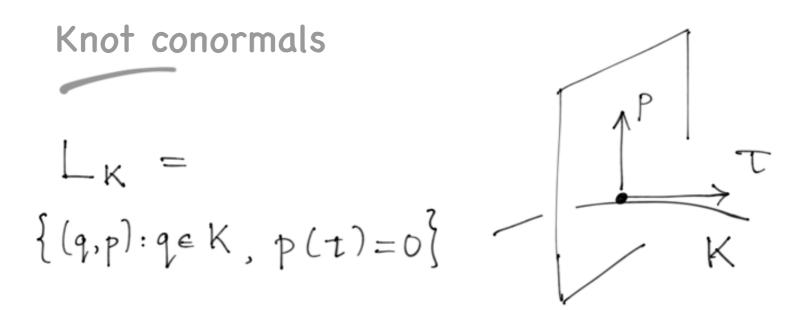


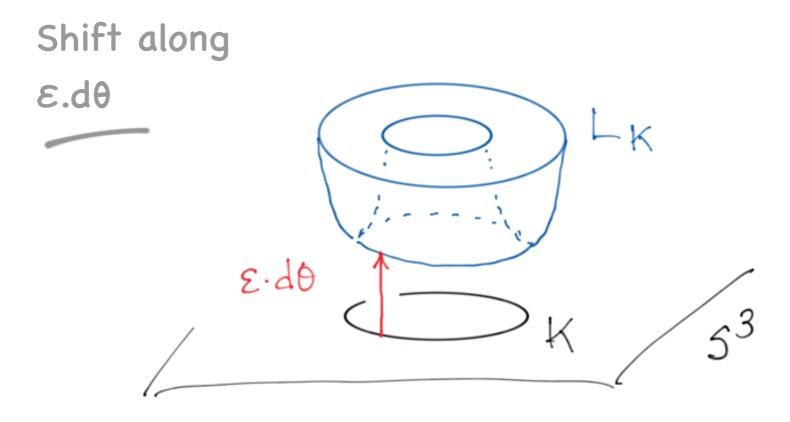
For $F_{K} \subset \mathcal{T}^{\times} M$ area $(n) = \int_{\partial n} p \, dq = 0$ \Rightarrow all curves constant.

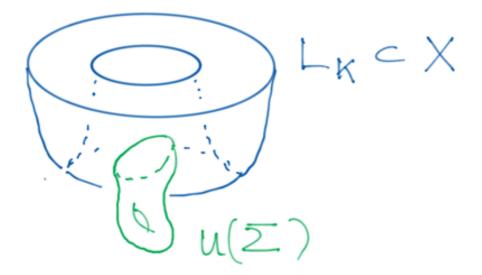
Oguri - Vafa large N

duality:









 $\begin{cases} u: (\Sigma, \partial \Sigma) \rightarrow (X, L_{k}) \\ du + Joduoi = 0 \end{cases}$

 $\Psi_{K}(Q,g_{s}) = \exp\left(\sum_{u \in M} w(u) g_{s}^{-\chi(u)} Q e^{-\chi(u)}\right)$

Ooguni - Vafa large N

 $\Psi_{k}(a,g_{s}) = \sum_{n} H_{n}(a^{1/2},e^{g_{s/2}})e^{nx}$

For example

 $\Psi_{W}^{(1)}(Q_{1}g_{s}) = \frac{Q^{1/2} - Q^{-1/2}}{e^{g_{s/2}} - e^{-g_{s/2}}} =$

 $= \frac{1}{g_{s}} \left(Q''^{2} - Q''^{2} \right) + g_{s} \frac{1}{24} \left(Q''^{2} - Q''^{2} \right)$

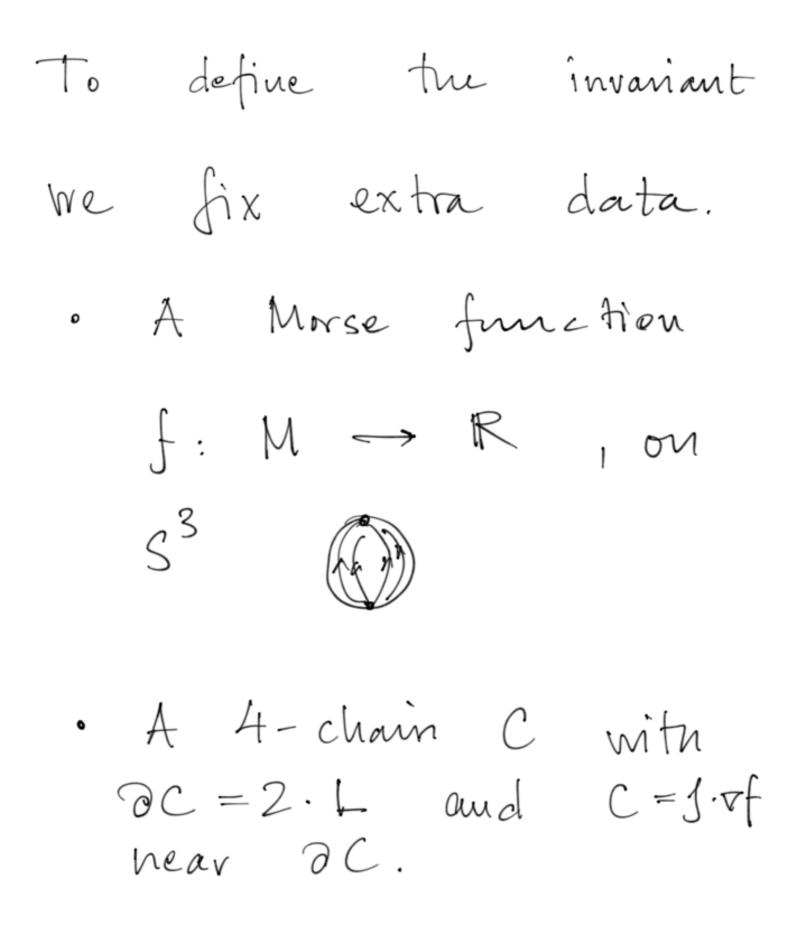
f • • •

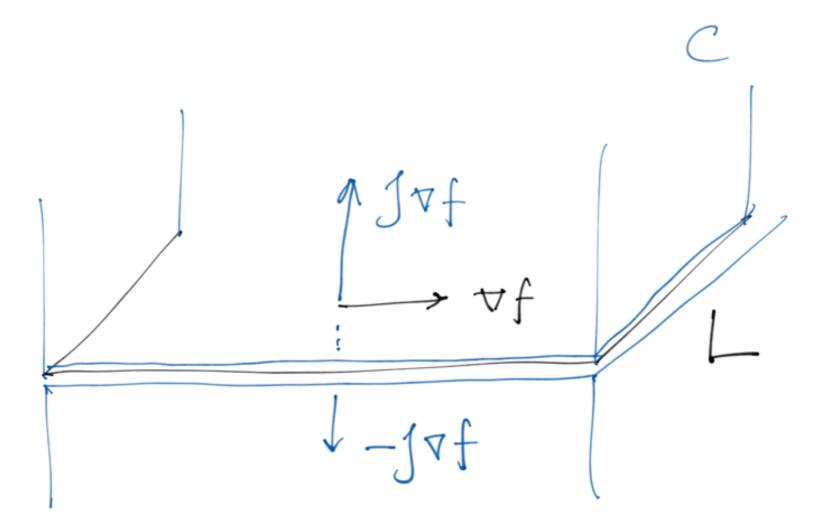
$$u: (\Sigma, \partial \Sigma) \rightarrow (X_1 L)$$

holomorphic

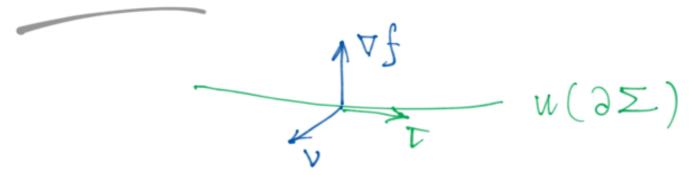
u(02) link in L

and a deformes C-Son L.

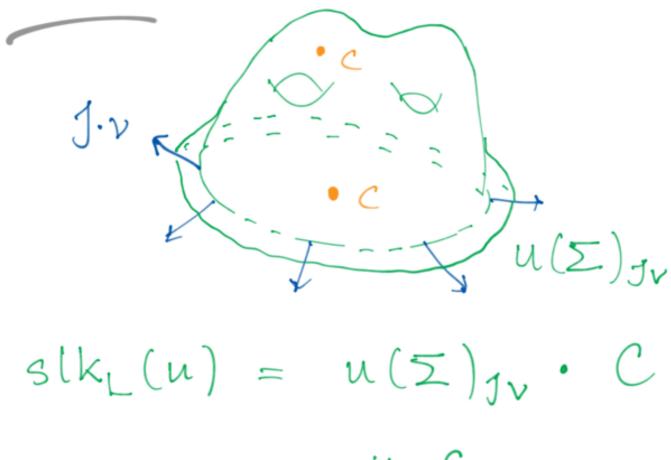




The boundary in the Lagrangian



In the ambient space



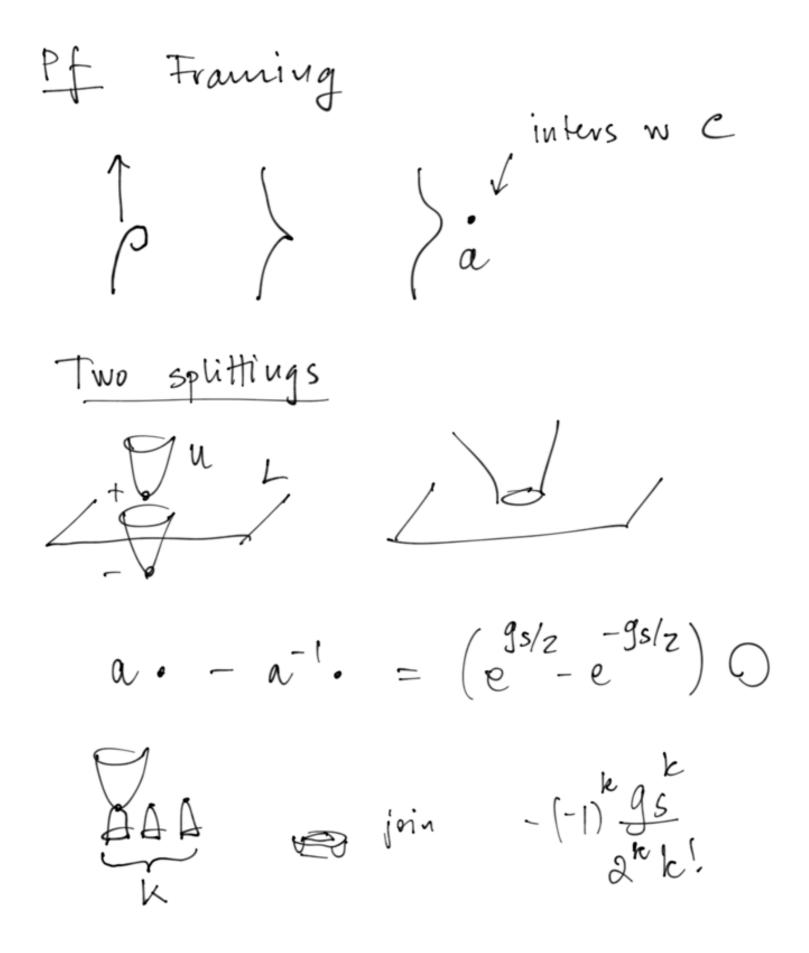
 $:= V \cdot C$

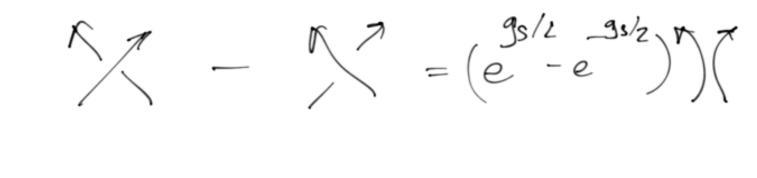
$$GW^{sk}(L) =$$

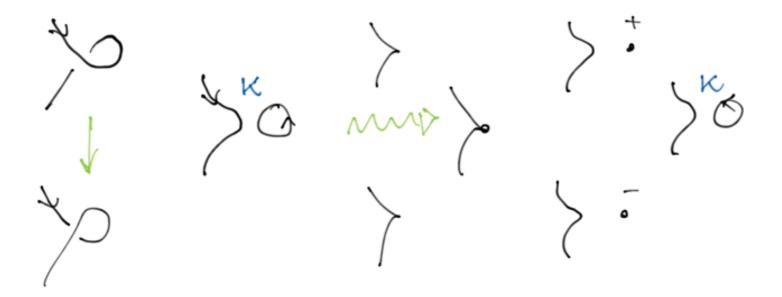
 $\sum w(n) g_s \quad a \quad \langle \partial u \rangle (a,q)$
 $u \in \mathcal{M}$

Thun
$$(\Xi - Shunde)$$

If $q = e^{9s/2}$ then $Gw^{sk}(L)$
is invariant under
deformation.

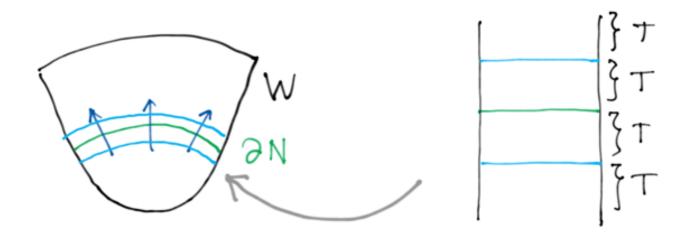






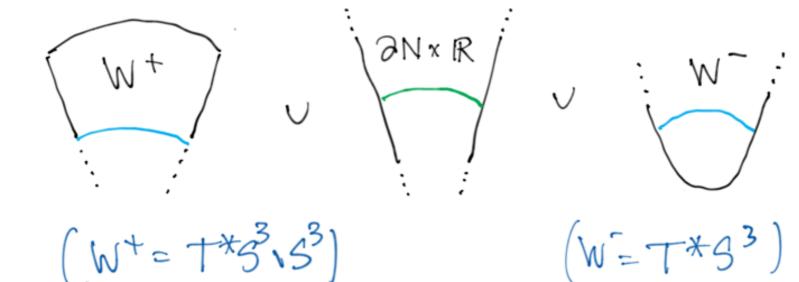
Using this invariance

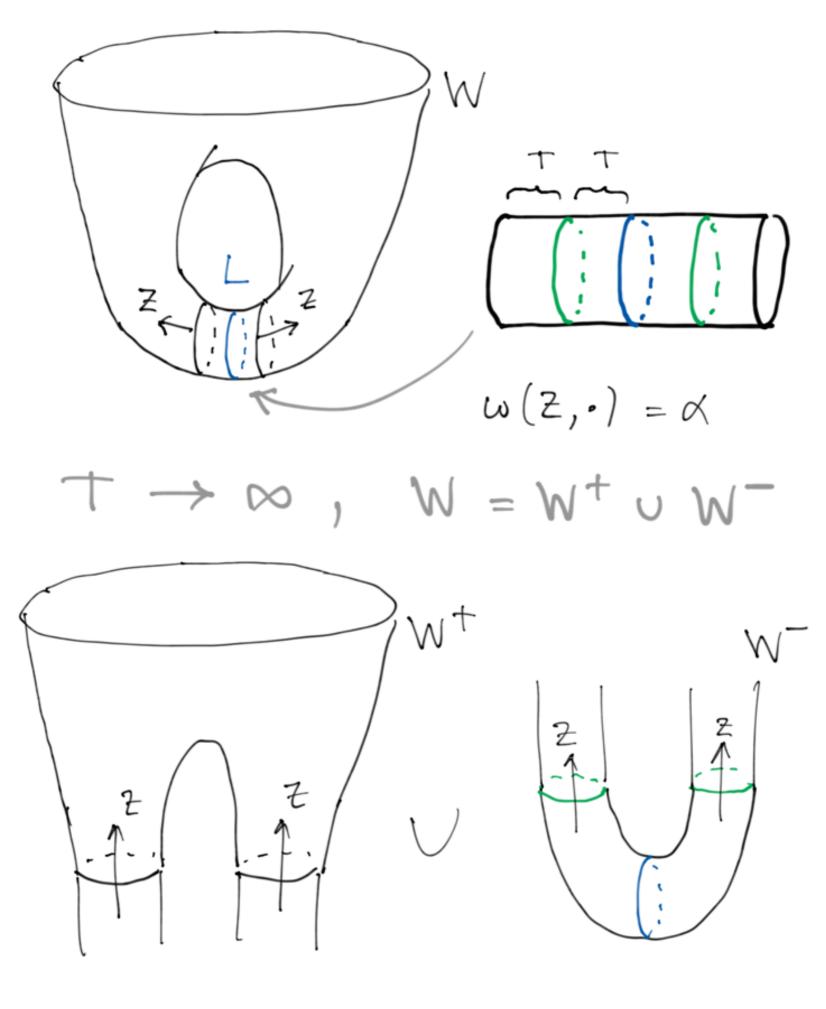
together with SFT-stoetch gives large N.

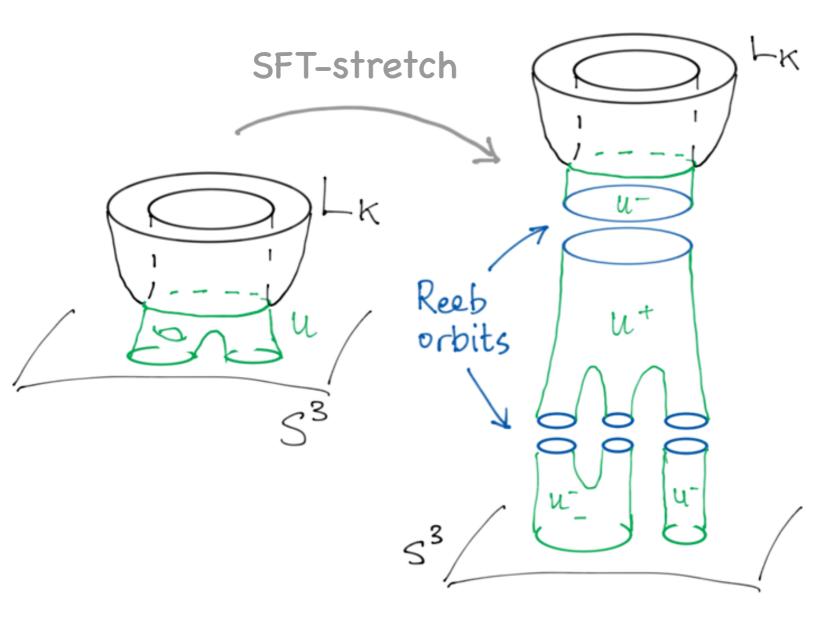


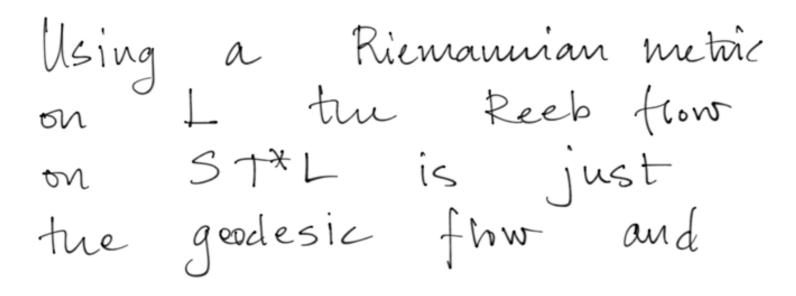
 $(\text{In our case } W = T * S^3 \text{ and}$ $\partial N = S_{g} T * S^3)$

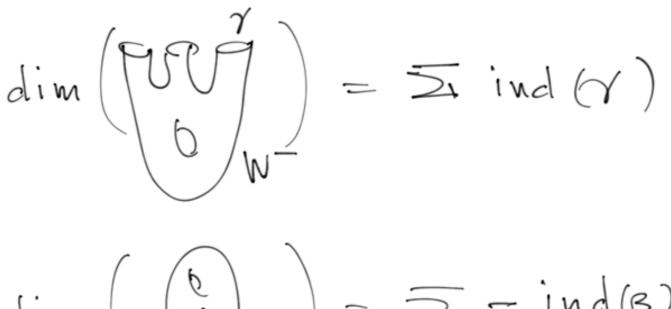
 $T \rightarrow \infty$, $W \rightarrow W^{\dagger} \cup \partial N \times R \cup W^{-}$

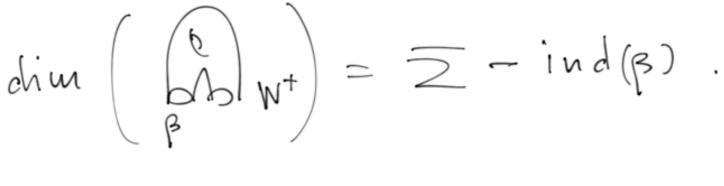








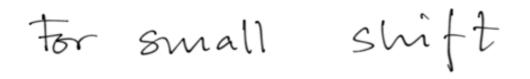




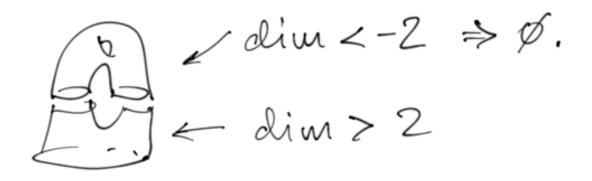
Where ind = Morse ind.

- Round metric on 5^3 ind ≥ 2 .
- Metric on $S^{1} \times R^{2}$, one closed geod ind = 0.

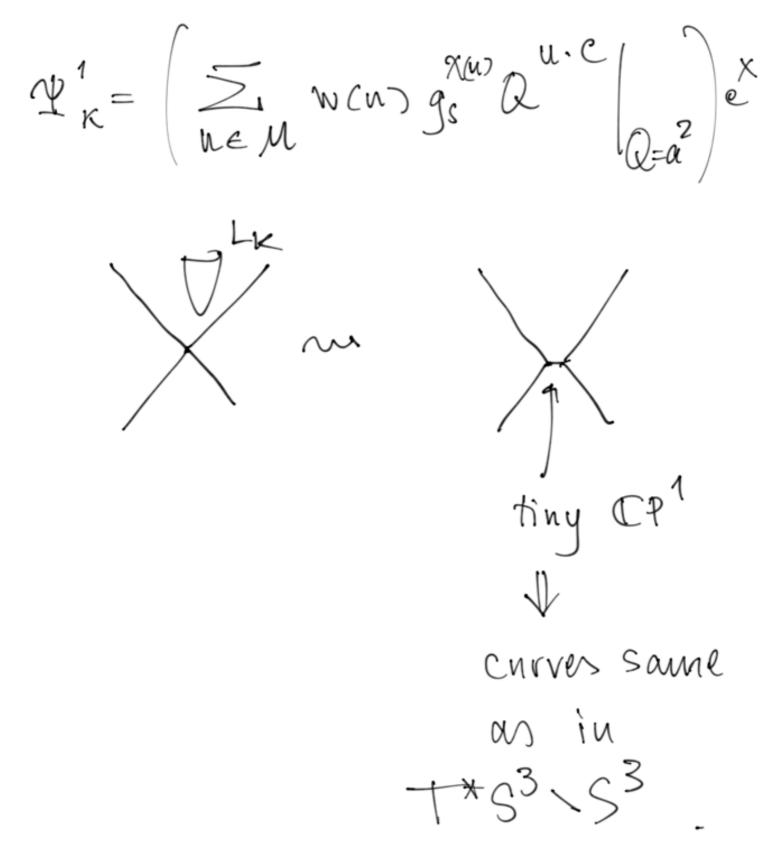




Under stretching all curves unst leave W

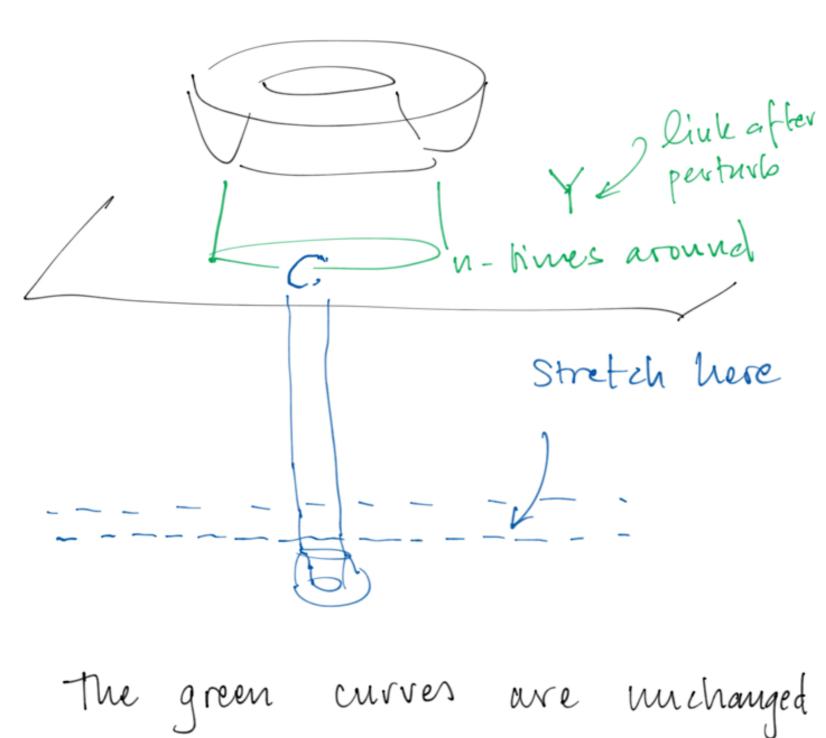


So



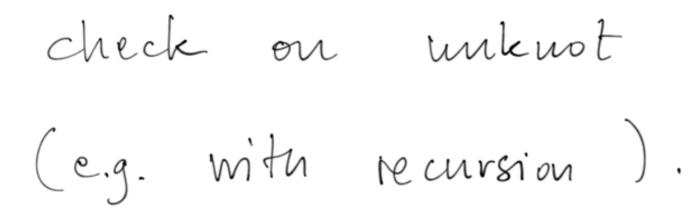
Symmetric colors:

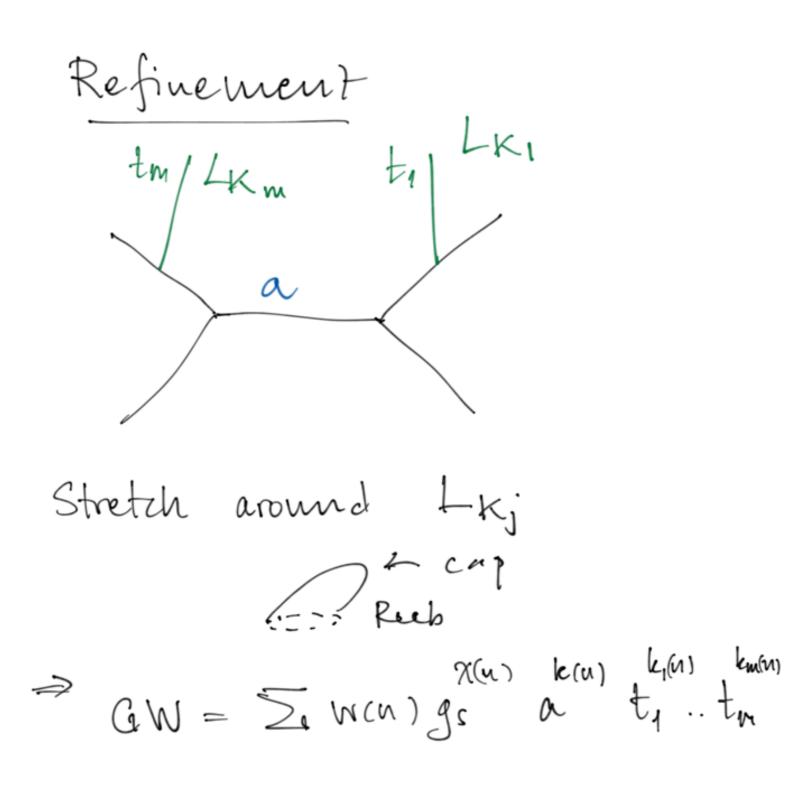
 $H_n(K) = H_1(K * Y_n)$ eigen link of 9 opentr in S'x D² $= \int_{k}^{\psi} K$



and (Y) = P(a,q)Y.

Note Y universal





Can in principle be computed
by elimination from infinity
$$\hat{A}_{e}(q, e^{\hat{P}_{i}}, e^{\hat{x}_{i}}, t_{j}, a) \Psi_{K} = 0$$