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Primer on quantum condensed matter physics

Known UV degrees of freedom (eg, electrons/spins/bosons)

IR: phases/phase transitions



Orientation

Conventional ordered phases of matter:
Concepts of broken symmetry/ Long Range Order (LRO)

Characterize by Landau order parameter.

Examples
X > A e, >
Ferromagnet Antiferromagnet

Landau Order

Known for several millenia
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Non-Landau order I: Topological quantum matter

Low energy effective theory: a topological quantum field theory
Known since 1980s

Examples

(i)  (Fractional) Quantum Hall effect

Phenomena: Quantization of Hall conductance, emergence of anyons with fractional
quantum numbers, gapless spatial boundaries,......

Low energy effective theory: Chern-Simons theory
(i)  Symmetry Protected Topological (SPT) phases of matter

Phenomena: Gapped ground state with "trivial’ excitations (no anyons), interesting
physics at spatial boundaries.

Distinction with completely trivial ground state is protected by a global symmetry.



Non-Landau order ll: Beyond topological order.
Gapless phases

Most familiar: Landau fermi liquid (!)

Interesting variants: Dirac, Weyi,...... materials

Even more striking: non-fermi liquid metals, ,,,,,,,
- no quasiparticle description of excitation spectrum!

Slowly evolving understanding in last 25 years.



Critical quantum matter (focus of this talk)

Continuous T = 0 quantum phase transitions

Phase A Phase B

Qualitative change in nature of many body ground state as a function of a tuning parameter.

Typical examples: lose quasiparticle description at the quantum critical point.



Quantum Phase Transitions: Generalities

* Universal critical singularities similar to thermal phase
transitions

« Continuous quantum phase transitions can control the
finite temperature physics in a region.

N

Insulator




Quantum criticality in condensed matter/field theory

Our intuition for what kinds of continuous quantum phase
transitions are possible and their description is very poor.

Textbook examples: B

Landau order Trivial phase

Universal critical singularities: Long wavelength, long time fluctuations of Landau order parameter.

Describe by continuum quantum field theory at zero temperature (may or may not be a CFT).

Quantum Landau-Ginzburg-Wilson (LGW) theory of fluctuating order parameter



Quantum criticality beyond the Landau paradigm

Eg: I. One or both phases have non-Landau order 2

Non-Landau order Other

2. More surprising: Landau-forbidden continuous

phase transitions between Landau allowed phases . ,
: f Landau order Landau order

TS, Vishwanath, Balents, Fisher, Sachdev, 2004



Phase transitions in qguantum magnets

Spin-1/2 magnetic moments on a square lattice
Model Hamiltonian

Ho=J Y S -Sp+--

<rr’>

- = additional interactions to tune quantum phase transitions

Usual fate: Neel antiferromagnetic order ’ : ‘ : ’ 2
Breaks SO(3) spin rotation symmetry. ,F/J—'Q/—/J—'Q/—f‘
Neel order parameter: SO(3) vector z / C / ‘! /




An SO(3) symmetry preserving phase (' quantum
paramagnet’)

With suitable additional interactions, obtain other phases that
preserve spin rotation symmetry.

Focus on a particular such phase called a Valence Bond Solid
(VBS) that breaks lattice symmetries.

Z4 order parameter associated with four patterns of VBS
ordering.




VBS Order Parameter

* Associate a Complex Number-

—#

67




The Neel-VBS quantum phase transition

Naive Landau expectation: Two independent order parameters - no generic
direct second order transition.

Naive expectation is incorrect: Possibility of a continuous Landau-forbidden
phase transition between Landau allowed phases

TS, Vishwanath, Balents, Sachdev, Fisher 2004



The Neel-VBS transition

TS, Vishwanath, Balents, Sachdev, Fisher 2004

Possible Landau-forbidden continuous transitions between Landau allowed phases

Field theoretic framework:

L= Dozl + V() +-

a=1,2

Zo: SU(2) doublet (“spinon”)
b: dynamical U(1) gauge field.

.- . all allowed local operators consistent with symmetries of lattice magnet.



Comments

L= |Dyzal? + V(|2]?) + - -

a=1,2

e Theory known as “Non-compact CP! model” (NCCP?!)

Monopole operators in b not added to action

e Neel order parameter N = 2t3z

VBS order parameter ¥y gs = M (monopole operator)
Read, Sachdev, 89; Haldane 88

Theory not in terms of natural order parameters but in terms of
“fractional spin’ fields z + gauge fields.

“"Deconfined quantum critical point”

TS, Vishwanath, Balents, Sachdev, Fisher 2004



Deconfined quantum criticality
TS, Vishwanath, Balents, Fisher, Sachdev, 2004

Emergence of field theory in terms of ‘deconfined’ degrees of freedom between
two phases with conventional "confined’ excitations.

Many proposed examples by now in 2+1-D.

Active area of research: input from many different directions

- numerical simulations, conformal bootstrap, field theory dualities,......



This talk
(Zhen Bi, TS, arXiv, 1808:07465)

A number of surprising quantum critical phenomena (no or few previous prior

examples)

|. (Solvable) Deconfined quantum criticality in 3+1-dimensions

Phase

2. Phase transitions described by multiple universality classes A Phase

3. Unnecessary continuous phase transitions

A

AN

4. Band-theory-forbidden quantum criticality between band insulators

Bonus: A striking possible duality of fermions in 3 +1-D.
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Outline

Focus on theories in 3+1-D.

|. Preliminaries: the free Dirac fermion

2. Massless SU(2) Yang-Mills theory with matter: interpretation as deconfined
quantum critical points

- some generalizations

3. Possible duality in 3+1-D

A gauge theory gt A free theory + a gapped TQFT

Similar example in 2+1-D: Gomis, Komargodski, Seiberg, 2017



Free Dirac fermion in 3+1-D

external background U(I1) gauge field(*)
4-component fermion

Also allow

(1) a mass term mapp

(2) placing on arbitrary smooth oriented space-time manifold with metric g.

Symmetries: U(1) x T

/N

Charge conservation Time reversal

With this choice of T, electric charge is T-reversal odd (could also have made the more standard choice).

(*) Strictly speaking, A is a Spin. connection.



The massless Dirac fermion as a quantum critical point

As sign of mass is changed there is a phase transition between a trivial insulator and
a topological insulator of these fermions at m = 0.

Trivial Topological
insulator insulator

Massless Dirac fermion

Understand
(i) Physical: Study spatial domain wall between the 2 phases

(ii) Formal: Derive change (between two signs of m) in theta term in response to
background gauge fields (A,g).



Sketch of the formal derivation

Similar methods powerful to derive all the results in the more complex examples

studied later in the talk. . _
See, eg, recent review: Witten RMP 2016

Partition function of free Dirac fermion of mass m

Zlm; A, gl =det(D+m) = 1_[(2)\Z +m)

l

(\; are eigenvalues of Hermitian Dirac operator —iD.)

As {~v5, D} = 0 non-zero eigenvalue come in pairs (\;, —\;)

Ratio of partition functions

Zlm]  TI,6@EN +m)
Zl=m] ~ LA —m)
All non-zero eigenvalues cancel out and
Zlm| _ (-1)7 ] = index of Dirac operator -iD
Z|—ml|

= topological invariant



Sketch of the formal derivation (cont’d)

Trivial Topological
insulator insulator

Z(m) — (—1)/ J = index of Dirac operator -iD
Z(—m) = topological invariant Massless Dirac fermion

By Atiyah-Singer index theorem, this gives a @ = TT axion angle for one
sigh of mass relative to other:

1 dA dA
J == /d4x— N — -+ gravitational theta term
2 2w 2w

Symmetry Protected Topological (SPT) insulator: response to background gauge fields has
a theta term with quantized coefficient



Comments on the massless point

Massless Dirac theory has more symmetries than massive case.

Eg: chiral rotation of the two Weyl fermions

We regard them as emergent - they survive in the IR when weak interactions are
added.

These emergent symmetries are anomalous ('t Hooft anomalies).



A simple generalization

N free Dirac fermions = 2N free Majorana fermions

Symmetry SO(2N) x T.

Taking m < 0 theory to be trivial, the m > 0 theory has a calculable theta term for
background SO(2N) gauge field and metric g.

Massless point: quantum criticality of trivial-topological phase of fermions with
SO(2N) XT symmetry.



SU(2) gauge theory with matter

Consider theories with N flavors of fermionic matter fields.

Two distinct cases.

(i) matter fields in fundamental (S = 1/2) representation

(i) matter fields in adjoint (S = |) representation

These are very different theories!



SU(2) gauge theory with fundamental matter

L =1 (=" (0, —iay) +m)t + Z_;Qtr <f/31/)

SU(2) gauge field

Despite appearances, this is a theory of bosons!

All local operators (baryons, mesons,....) are bosonic.

Ny flavors: can show theory has global symmetry %]:f) x T,

View this gauge theory as the IR description of some UV system of
interacting gauge-invariant bosons with this global symmetry.



Some well known properties

Nt
—@ @
;onﬁn|ng, Conformal IR free
massive, symmetry window

broken ,

Asymptotically free (in = "UV” limit
of continuum field theory)

Upper boundary of conformal window known from perturbative RG.
Lower boundary: many numerical studies, controversial.

Though the theories in the conformal window are interesting,
to keep things simple | will mostly focus on the IR-free theories in this talk.

Q: What kind of criticality do these theories describe??



RG flow structure for large Nt

Massless (weakly coupled) fixed point separates two strongly coupled phases



Nature of the two massive phases

m < 0: Trivial symmetric gapped phase.

m > 0: Dynamical SU(2) gauge field has a theta response at O = N TT.

Nf odd - (unknown) fate of SU(2) gauge theory at O = Tr

Nf even - standard SU(2) gauge theory => trivial symmetric gapped phase but could
be in a different SPT phase.

Stick to even Ny.

Massless point is deconfined though both phases are confined (deconfined quantum
criticality)



Nature of the two massive phases (cont’d)

Start with theory of 4Nf Majorana fermions with SO(4Nf) x T symmetry, and

calculate ratio of partition functions and associated theta terms for background
SO(4Nf¥) gauge fields.

Make dynamical an SU(2) subgroup to construct needed theory.

Can then get theta term for background global symmetry.

Distinct theta terms depending on the value of Nf/2 mod 4 => distinct SPT phases.



Bosonic topological phase transition in 3+1-D

Trivial boson phase

———<—0—>—>—

|

SPT boson phase

Deconfined quantum critical point (IR free for large Ny)

Deconfined critical SU(2) gauge theory with fundamental fermions describes

phase transition between Trivial and SPT phases of bosons with

symmetry.

Sp(Ny)
Z—QfXT



A generalization and some interesting phenomena

Sp(Nc) gauge theories with Nf fundamental fermions: also
describe UV bosonic systems with same global symmetry.

These provide a large set of IR-distinct field theories for the
same set of trivial-SPT phase transitions of these bosons.

Trivial gapped state

of bosons SPT phase of

bosons

Multiple universality classes for the same phase transition.

These different theories are " “weakly dual” (have the same local operators, the same global
symmetry, and phase diagram) but are not ~strongly dual”.



Other interesting phenomena: Unnecessary phase
transitions

Quantum critical points usually separate two distinct phases
of matter.

However we find examples where there is a quantum critical
line living inside a single phase. 4
Nf =0 (mod 4), Nc = 0 (mod 4) (and Nt big enough) @

““Unnecessary continuous phase transition”

(can go around the transition analogous to liquid-gas but
here the transition is continuous!)

Other examples can be constructed without emergent gauge fields.



SU(2) gauge theory with Nr flavors of adjoint fermionic
matter

- . 1
L= (—iv" (0, —ia,) +m) @TD + 2—92757“ (fi,/) (+ Lz, al)
adjoint
This describes a theory with local fermions!

C ~ eijk(zﬁiwj)wk is a gauge invariant fermion.

Important to add "heavy’ (bosonic) spectator matter fields z in
fundamental representation.

Global symmetry SO(2 Nf) x T (with c in vector representation)

View this gauge theory as IR description of some UV system of
fermions with global SO(2 Nf) x T symmetry.



Remarks on adjoint SU(2) gauge theory

m = 0: The conformal window with adjoint matter occurs at lower Nf than with
fundamental matter.

Asymptotic freedom lost at Nf= 3.

In absence of spectator fundamental scalars, theory has unbreakable electric strings in
fundamental representation

Corresponding ~one-form” symmetry (Gaiotto, Kapustin, Seiberg, Willett, 2015).
Important: spectator fundamental scalars explicitly break the |-form symmetry

To completely specify the theory, must specify action of global symmetries on
spectators.



Large Ns

&
Trivial fermion phase SPT fermion phase
Story similar to previous examples.
Massless, IR-free theory: deconfined Y
quantum critical point between
between trivial and SPT phases of fermions. Y
<< >

Interesting examples of band-theory-forbidden m
criticality between band insulators.

Deconfined quantum critical point (IR free
for large N¥)
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Ni= |

Important theory in both condensed matter and high energy physics

Condensed matter: Physical fermions with U(l) x T symmetry
- a familiar much-studied system

Topological superconductor (" class A llI"’) of importance in many other problems

High-energy: Gauge theory is a deformation of famous N = 2 Seiberg-Witten theory

Recent papers: Anber and Poppitz; Cordova and Dumitrescu; Bi and TS.



IR physics of SU(2) YM with Nf = | adjoint fermion

m = 0: Possibly conformal from existing numerics (eg, Athenodorou, Bennett, Bergner,
Lucini, 2015) .

m #0, large: Expect confined, symmetry preserving, phases (no induced theta term
for dynamical gauge field).

Topological distinction between two " trivial”’ phases at large |m| ??

m
— —n—"
Trivial Topologlcal
) insulator ??
insulator

Conformal?



Phase diagram of SU(2) YM + Nf = | adjoint fermion

SPT phases of fermions with U(1) x T are classified by Zg x Zs.

C.Wang, TS, 2014
Label by (k,s) with k = (0,1,2,.....,7) and s = (0, 1) . Freed, Hopkins, 2016

In gauge theory calculating partition function ratio shows that
phase with m > 0 is (k,0) with k odd.

Precise T-implementation (including on heavy z bosons) determines which odd k.

Choose z a Kramers doublet => get k = -1.

m

Trivial I Tf)pologlcal
) insulator
insulator

Conformal?



Completing the phase diagram

m
—— ! ® N—
Trivial I T9po|og|cal
. insulator
insulator
Conformal?

Gauge theory description: one possible evolution from trivial to topological insulator.

Free fermion theory: another possible evolution between same two phases.



Topological quantum criticality of fermions

Could gauge theory and free fermion descriptions be the same??

m
Trivial @4 @ Topological Trivial Topological
insulator insulator (k = -1) insulator insulator (k = -1)
Conformal? Massless Dirac fermion

Y (Y (O — i) +m) Y + s tr(fu)? X (v*0, +m) x

The two massless theories have same local operators, and (almost) the same
ordinary global symmetries.

“"Wild” possibility: Perhaps they are the same theory in the IR?



Could these two 3+1-D theories really be IR dual?

How to tell?

At the very least check that emergent symmetries and their anomalies match at
massless point.

Must include both ordinary (0-form) and |-form global symmetries.



Emergent symmetries: massless free Dirac fermion

Single Dirac fermion = 2 Weyl fermions

SU(2)xU(1)
Z2

Emergent symmetry

SU (2) rotates the two Weyl fermions
U(1): axial rotation

Several anomalies (chiral anomaly for U(I), and Witten anomaly for SU(2))

(+ discrete symmetries: T, P, C)



Emergent symmetries: massless SU(2) YM + Ns
adjoint Dirac fermion

Quantum effects reduce axial symmetry to Zs.

SU(Q) XZg
Z2

Emergent O0-form symmetry:

+ 1-form symmetry

(Unbreakable electric loops in spin-1/2 representation)

Compare with free massless Dirac fermion: Zg is replaced by U(l) and no |-form
symmetry.

Can match O-form symmetries/anomalies if Zg is dynamically enhanced to U(l) in IR



Could these two 3+1-D theories really be IR dual?

How to tell?

At the very least check that emergent symmetries and their anomalies match at
massless point.

Must include both ordinary (0-form) and |-form global symmetries.

Good news: If Zg of gauge theory is dynamically enhanced to U(1) in IR, then free
Dirac fermion can match O-form symmetries and anomalies.



Could these two 3+1-D theories really be IR dual?

How to tell?

At the very least check that emergent symmetries and their anomalies match at
massless point.

Must include both ordinary (0-form) and |-form global symmetries.

Good news: If Zg of gauge theory is dynamically enhanced to U(1) in IR, then free
Dirac fermion can match O-form symmetries and anomalies.

Bad news: Extra anomalies involving the |-form symmetry (mixed anomaly with Zs,
and with gravity) - no analog in free Dirac theory.

Cordova, Dumitrescu, 2018



Implications

Massless SU(2) YM + Nf = | adjoint Dirac fermion cannot just flow to free
massless Dirac fermion.

A better alternate:

Match the |-form anomalies by augmenting the free Dirac fermion with a gapped
topological sector that has the right |-form anomalies.

Massless SU(2) YM theory +
o A free Dirac theory + a gapped TQFT

Nf = | adjoint Dirac fermion

Suggestion for a specific TQFT in our paper: loop fractionalized’ fermionic Z; gauge theory
enriched by Zsg, |-form symmetries

Other candidate phases: Cordova, Dumitrescu



Adding in spectator boson

Massless SU(2) YM theory +

Nf = | adjoint Dirac fermion

Rl

A free Dirac theory + a gapped TQFT

Spectator boson breaks |-form symmetry.

But in the TQFT, the loops have fractionalized’ => topological order survives even
when |-form symmetry is broken, or if a small mass is added.

Gauge theory phase diagram
if duality is right

X

|
0 M

n =20 Z5 Topological Order n=-—1




Summary

Simple examples illustrating many surprising quantum critical
phenomena.

|. Deconfined quantum criticality in 3+1-dimensions .
Trivial SPT

2. Phase transitions described by multiple universality classes

3. Unnecessary continuous phase transitions I :k\

>
4. Band-theory-forbidden critical points between band insulators

Bonus: A striking possible duality of fermions in 3 +1-D.

Massless SU(2) YM theory +
o A free Dirac theory + a gapped TQFT

Nf = | adjoint Dirac fermion




