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Primer on quantum condensed matter physics 

Known UV degrees of freedom  (eg, electrons/spins/bosons)

 IR:  phases/phase transitions



Orientation

Conventional ordered phases of matter: 

Concepts of broken symmetry/ Long Range Order (LRO)

Characterize by Landau order parameter. 

| ���� .........⇥

Examples

| �⇥�⇥ .........⇤

Ferromagnet Antiferromagnet

Landau Order

Known for several millenia



Non-Landau order I:  Topological quantum matter

Low energy effective theory: a topological quantum field theory

Known since 1980s



Non-Landau order I:  Topological quantum matter

Examples

(i) (Fractional) Quantum Hall effect

Phenomena: Quantization of Hall conductance, emergence of anyons with fractional 
quantum numbers, gapless spatial boundaries,……

Low energy effective theory:  Chern-Simons theory 

 

Low energy effective theory: a topological quantum field theory

Known since 1980s



Non-Landau order I:  Topological quantum matter

Examples

(i) (Fractional) Quantum Hall effect

Phenomena: Quantization of Hall conductance, emergence of anyons with fractional 
quantum numbers, gapless spatial boundaries,……

Low energy effective theory:  Chern-Simons theory 

(ii)     Symmetry Protected Topological (SPT)  phases of matter

 Phenomena: Gapped ground state with `trivial’ excitations (no anyons),  interesting 
physics at spatial boundaries. 

Distinction with completely trivial ground state is protected by a global symmetry. 

Low energy effective theory: a topological quantum field theory

Known since 1980s



 Non-Landau order II: Beyond topological order.
Gapless phases

Most familiar: Landau fermi liquid (!)

Interesting variants: Dirac, Weyl,…… materials  

 
 Even more striking: non-fermi liquid metals, ,,,,,,,
       - no quasiparticle description of excitation spectrum!

 
                       Slowly evolving understanding in last  25 years. 



Critical quantum matter (focus of this talk)

Continuous T = 0 quantum phase transitions  

  

 

Phase A Phase B

Qualitative change in nature of many body ground state as a function of a tuning parameter.

Typical examples: lose quasiparticle description at the quantum critical point. 

 



Quantum Phase Transitions: Generalities

• Universal critical singularities similar to thermal phase 
transitions 

• Continuous quantum phase transitions can control the 
finite temperature physics in a region.

T Quantum-critical

JJc
SuperfluidInsulator



Quantum criticality in condensed matter/field theory

Our intuition for what kinds of continuous quantum phase 
transitions are possible and their description is  very poor.  

 

Textbook examples:   

 

Landau order Trivial phase

Universal critical singularities: Long wavelength, long time fluctuations of Landau order parameter. 

Describe by continuum quantum field theory at zero temperature (may or may not be a CFT). 

Quantum Landau-Ginzburg-Wilson (LGW)  theory of fluctuating order parameter



Quantum criticality beyond the Landau paradigm 

Eg: 1. One or both phases have non-Landau order

2. More surprising: Landau-forbidden continuous 
phase transitions between Landau allowed phases

  

Non-Landau order Other

Landau order Landau order’

TS,  Vishwanath, Balents, Fisher, Sachdev,  2004



Phase transitions in quantum magnets 
Spin-1/2 magnetic moments on a square lattice  

Usual fate: Neel antiferromagnetic order

Breaks SO(3) spin rotation symmetry. 

Neel order parameter: SO(3) vector

Model Hamiltonian

H0 = J
X

<rr0>

~Sr · ~Sr0 + · · ·

· · · = additional interactions to tune quantum phase transitions



An SO(3) symmetry preserving phase (``quantum 
paramagnet”) 

With suitable additional interactions, obtain other phases that 
preserve spin rotation symmetry. 

Focus on a particular such phase called a Valence Bond Solid 
(VBS) that breaks lattice symmetries. 

Z4 order parameter associated with four patterns of VBS 
ordering. 



VBS Order Parameter

• Associate a Complex Number   



 The Neel-VBS quantum phase transition

Naive Landau expectation: Two independent order parameters - no generic 
direct second order transition. 

 
Naive expectation is incorrect: Possibility of a continuous Landau-forbidden 
phase transition between Landau allowed phases

TS,  Vishwanath, Balents, Sachdev, Fisher 2004



 The Neel-VBS transition 

Possible Landau-forbidden continuous transitions between Landau allowed phases

Field theoretic framework:

L =

X

↵=1,2

|Dbz↵|2 + V (|z|2) + · · ·

z↵: SU(2) doublet (“spinon”)

b: dynamical U(1) gauge field.

· · · : all allowed local operators consistent with symmetries of lattice magnet.

TS,  Vishwanath, Balents, Sachdev, Fisher 2004



Comments 
 

L =

X

↵=1,2

|Dbz↵|2 + V (|z|2) + · · ·

• Theory known as “Non-compact CP 1
model” (NCCP 1

)

Monopole operators in b not added to action

• Neel order parameter

~N = z†~�z

VBS order parameter  V BS = Mb (monopole operator)

Theory not in terms of natural order parameters but in terms of
`fractional spin’ fields z + gauge fields.  

``Deconfined quantum critical point” 

TS,  Vishwanath, Balents, Sachdev, Fisher 2004

Read, Sachdev, 89; Haldane 88



Deconfined quantum criticality

Emergence of field theory in terms of `deconfined’  degrees of freedom between 
two phases with conventional `confined’ excitations. 

 

Many proposed examples by now in 2+1-D. 

 

 Active area of research: input from many different directions

- numerical simulations, conformal bootstrap, field theory dualities,……

TS,  Vishwanath, Balents, Fisher, Sachdev,  2004



 This talk
(Zhen Bi, TS, arXiv, 1808:07465)

A number of surprising quantum critical phenomena (no or few previous prior 
examples)

1. (Solvable) Deconfined quantum criticality in 3+1-dimensions

2.  Phase transitions described by multiple universality classes

3. Unnecessary continuous phase transitions

 

4. Band-theory-forbidden quantum criticality between band insulators

Phase 
A Phase 

B

Bonus:  A striking possible duality of fermions in 3 +1-D.  



Outline

Focus on theories in 3+1-D. 

1.  Preliminaries: the free Dirac fermion 
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Outline

Focus on theories in 3+1-D. 

1.  Preliminaries: the free Dirac fermion 

2.  Massless SU(2) Yang-Mills theory with matter:  interpretation as  deconfined 
quantum critical points

    - some generalizations 

3.  Possible duality in 3+1-D 

 

A gauge theory A free theory + a gapped TQFT

Similar example in 2+1-D:  Gomis, Komargodski, Seiberg, 2017



Free Dirac fermion in 3+1-D
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to K. It’s Kramers partner is the state at �K which
has exactly the opposite “spin” polarization. When the
composite fermion goes around it’s Fermi surface the ro-
tation of the momentum by 2⇡ thus forces a Berry phase
of ⇡.

We can see that this ‘new’ dipole is the natural fate of
the ‘old’ dipolar picture when ⌫ = 1/2 and particle hole
symmetry is taken into account.

Thus we now have a very simple physical picture of
the structure of the particle-hole symmetric composite
fermion. This physical picture also establishes a conti-
nuity between the theory of the particle-hole symmetric
composite fermi liquid with the earlier descriptions.

We turn next to a di↵erent understanding of the
particle-hole symmetric half-filled Landau level which
yields powerful insights.

V. THE HALF-FILLED LANDAU LEVEL AS A
TOPOLOGICAL INSULATOR SURFACE STATE

It is important to emphasize that the C symmetry at
⌫ = 1

2 is not an exact ultra-violet (UV) symmetry of the
theory. Further it does not act locally in the microscopic
Hilbert space. It is an emergent non-local symmetry of
just the lowest Landau level at half-filling with the re-
striction to a two-body interaction (or more generally to
2n-body terms). As a matter of principle an exact pro-
jection from higher Landau levels will also have three-
body terms, etc which will break the C symmetry. A
useful approximation, in the limit of weak Landau level
mixing, is to ask about the ground state in the lowest
Landau level with exact C symmetry, and then under-
stand the C-breaking e↵ects as a perturbation.

Can we find a UV completion of the half-filled Lan-
dau level that retains C as an exact microscopic local
symmetry? We turn next to this question.

Consider fermions in 3d with a symmetry group U(1)⇥
C. For now we define C acting on these fermions to be
an anti unitary operator which is such that the generator
of the U(1) symmetry is odd under C. As an example
consider a lattice tight binding Hamiltonian

H3d =
X

ij

X

s

tijc
†
iscjs + h.c

+�ij

⇣
c†i"c

†
j# + c†i#c

†
j"

⌘
+ h.c

Here i, j are sites of a 3d lattice, s =", # is the electron
spin. The triplet Cooper pairing term breaks charge con-
servation, and SU(2) spin rotations but leaves a U(1)
subgroup of rotations generated by Sz invariant. So
long as the hopping and pairing parameters are real the
Hamiltonian is also invariant under an anti unitary time
reversal operation which we denote C that acts locally
and takes cis ! i (�y)ss0 cis0 .

Consider gapped free fermion Hamiltonians with this

symmetry1 . The progress on topological insula-
tors/superconductor shows that in 3d such systems are
classified[58, 59] by the group Z corresponding to an inte-
ger topological invariant which we label n. Correspond-
ingly at the two dimensional interface with the vacuum
there is a gapless surface state with n Dirac cones with
the Lagrangian:

L =
nX

↵=1

 ̄↵

�
�i/@

�
 ↵ (15)

with the following symmetry action

U(�) ↵U
�1(�) = ei� ↵ (16)

C ↵C
�1 = i�y 

†
↵ (17)

The fermions  ↵ are each 2-component and the corre-
sponding � matrices are �0 = �y, �1 = �z, �2 = �x.
The fermion density  †

↵ ↵ is odd under C. Thus the
symmetry action on the surface is U(1)⇥C as required.
Further the oddness under C implies that we cannot add
a chemical potential term so that the Dirac fermions are
necessarily at neutrality.

Recent work[35, 36] shows that with interactions this
Z classification is reduced to Z8 (so that only n =
0, 1, ...., 7 are distinct phases)2. We will henceforth fo-
cus on the n = 1 state which is stable to interactions.

We will take the liberty of calling the generator of the
global U(1) symmetry as ‘charge’ irrespective of its mi-
croscopic origins in an electron model. This charge is
odd under the anti unitary C operation. We will fur-
ther take the liberty of occasionally referring to C as
“time reversal”. When the results are applied to the
half-filled Landau level discussed in the previous section
the C operation will be interpreted physically precisely
as the anti-unitary particle-hole symmetry transforma-
tion (hence the same symbol as in the previous section).
In that context C should of course not be confused with
physical time reversal which is not a symmetry of the
half-filled Landau level.

Consider coupling the surface theory, at n = 1, to
external static “electromagnetic” fields that couple to
the U(1) charge and current densities. As the charge is
odd under C the current is even. Then electric fields are
C-odd while magnetic fields are C-even. We can thus
perturb the surface theory by introducing an external
magnetic field while preserving the U(1)⇥C symmetry.
We will work in a limit in which we assume that the
continuum approximation (Eqn. 15) is legitimate. The
resulting Lagrangian takes the form

L =  ̄
�
�i/@ + /A

�
 + .... (18)

1
This symmetry class is denoted AIII in the topological insulator

literature.

2
There is an additional Symmetry Protected Topological phase

which cannot be described within free fermion theory so that

the full classification[35] is Z8 ⇥ Z2.

external background  U(1) gauge field(*)
4-component fermion

Also allow

(1) a mass term m ¯  

(2) placing on arbitrary smooth oriented space-time manifold with metric g.

Symmetries: U(1) x T

Charge conservation Time reversal 

  With this choice of T, electric charge is T-reversal odd (could also have made the more standard choice).   

(*) Strictly speaking,  A is a Spinc connection. 



The massless Dirac fermion as a quantum critical point

As sign of mass is changed there is a phase transition between a trivial insulator and 
a topological insulator of these fermions at m = 0. 

Trivial
insulator

Topological 
insulator 

m

Massless Dirac fermion

Understand

(i) Physical:  Study spatial domain wall between the 2 phases 

(ii) Formal: Derive change (between two signs of m) in theta term in response to 
background gauge fields (A,g). 



Sketch of the formal derivation 

Similar methods powerful to  derive all the results in the more complex examples 
studied later in the talk. 

Derivation of theta term for TI

Partition function of free Dirac fermion of mass m is

Z[m;A, g] = det(D +m) =
Y

i

(i�i +m) (1)

(�i are eigenvalues of Hermitian Dirac operator �iD.)

Therefore

Z[m]

Z[�m]
=

Q
i(i�i +m)Q
i(i�i �m)

(2)

All non-zero eigenvalues cancel out and

Z[m]

Z[�m]
= (�1)J (3)

J = index of Dirac operator (= di↵erence of number of positive helicity and negative helicity zero

modes)

J is a topological invariant and is related by the Atiyah-Singer theorem to (A, g) through

J =

Z
d

4
x

1

2

F

2⇡
^ F

2⇡
� �

8
(4)

with F = dA, and � (the signature of the manifold) is independent of A. Thus if we choose Z[m] to

represent a trivial theory, Z[�m] is a theory with a ✓ term at ✓ = ⇡ for the probe A-field, exactly as

expected for a topological insulator. The � can be related to a gravitational theta term and gives

the right thermal Hall conductivity of the boundary theory when T-reversal is broken.

Partition function of free Dirac fermion of mass m
Derivation of theta term for TI

Partition function of free Dirac fermion of mass m is

Z[m;A, g] = det(D +m) =
Y

i

(i�i +m) (1)

(�i are eigenvalues of Hermitian Dirac operator �iD.)

Therefore

Z[m]

Z[�m]
=

Q
i(i�i +m)Q
i(i�i �m)

(2)

All non-zero eigenvalues cancel out and

Z[m]

Z[�m]
= (�1)J (3)

J = index of Dirac operator (= di↵erence of number of positive helicity and negative helicity zero

modes)

J is a topological invariant and is related by the Atiyah-Singer theorem to (A, g) through

J =

Z
d

4
x

1

2

F

2⇡
^ F

2⇡
� �

8
(4)

with F = dA, and � (the signature of the manifold) is independent of A. Thus if we choose Z[m] to

represent a trivial theory, Z[�m] is a theory with a ✓ term at ✓ = ⇡ for the probe A-field, exactly as

expected for a topological insulator. The � can be related to a gravitational theta term and gives

the right thermal Hall conductivity of the boundary theory when T-reversal is broken.

Ratio of partition functions

J = index of Dirac operator -iD
= topological invariant

See, eg, recent review:  Witten RMP 2016

As {�5, D} = 0 non-zero eigenvalue come in pairs (�i,��i)



Sketch of the formal derivation (cont’d)

By Atiyah-Singer index theorem,  this gives a θ = π  axion angle  for one 
sign of mass relative to other: 

Z(m)

Z(�m)
= (�1)J J = index of Dirac operator -iD

= topological invariant

J =

1

2

Z
d

4
x

dA

2⇡

^ dA

2⇡

+ gravitational theta term

Trivial
insulator

Topological 
insulator 

m

Massless Dirac fermion

Symmetry Protected Topological (SPT) insulator:  response to background gauge fields has 
a theta term with quantized coefficient 



Comments on the massless point

Massless Dirac theory has more symmetries than massive case. 

Eg: chiral rotation of the two Weyl fermions 

We regard them as emergent - they survive in the IR when weak interactions are 
added. 

These emergent symmetries are anomalous (’t Hooft anomalies). 



A simple generalization

N free Dirac fermions = 2N free Majorana fermions

Symmetry SO(2N) x T. 

Taking m < 0 theory to be trivial, the m > 0 theory has a calculable theta term for 
background SO(2N) gauge field and metric g.

 

Massless point: quantum criticality of trivial-topological phase of fermions with 
SO(2N) X T symmetry. 

 



SU(2) gauge theory with matter

Consider theories with Nf flavors of fermionic matter fields. 

Two distinct cases. 

(i)   matter fields in fundamental (S = 1/2) representation 

(ii) matter fields in adjoint (S = 1) representation 

These are very different theories! 



SU(2) gauge theory with fundamental matter

Despite appearances, this is a theory of bosons!  

All local operators (baryons, mesons,….) are bosonic. 

L =  ̄ (�i�µ(@µ � iaµ) +m) +
1

2g2
tr

�
f2
µ⌫

�

SU(2) gauge field 

View this gauge theory as the IR description of some UV system of 
interacting gauge-invariant bosons with this global symmetry. 

Nf flavors: can show theory has global symmetry

Sp(Nf )
Z2

⇥ T .



Some well known properties

Nf

Asymptotically free (in ``UV” limit 
of continuum field theory)

IR free Conformal 
window 

Confining;
massive, symmetry 

broken 

Upper boundary of conformal window known from perturbative RG.
Lower boundary:  many numerical studies, controversial. 

Though the theories in the conformal window are interesting, 
to keep things simple I will mostly focus on the IR-free theories in this talk. 

Q: What kind of criticality do these theories describe??



RG flow structure for large Nf

m

g

Massless (weakly coupled) fixed point separates two strongly coupled phases 



Nature of the two massive phases

m < 0:  Trivial symmetric gapped phase. 

m > 0: Dynamical SU(2) gauge field has a theta response at θ = Nf π. 

Nf odd -  (unknown) fate of SU(2) gauge theory at θ = π 

Nf even - standard SU(2) gauge theory => trivial symmetric gapped phase but could 
be in a different SPT phase. 

Stick to even Nf.  

Massless  point is deconfined though both phases are confined (deconfined quantum 
criticality)



Nature of the two massive phases (cont’d)

Start with theory of 4Nf Majorana fermions with SO(4Nf) x T symmetry, and 
calculate ratio of partition functions and associated theta terms for background 
SO(4Nf) gauge fields. 

Make dynamical an SU(2) subgroup to construct needed theory. 

Can then get theta term for background global symmetry. 

Distinct theta terms depending on the value of Nf/2 mod 4 => distinct SPT phases. 



Bosonic topological phase transition in 3+1-D

Deconfined critical SU(2) gauge theory with fundamental fermions describes

phase transition between Trivial and SPT phases of bosons with

Sp(Nf )
Z2

⇥ T
symmetry.

m

g

Trivial boson phase
SPT boson phase

Deconfined quantum critical point (IR free for large Nf)  



A generalization and some interesting phenomena

Sp(Nc) gauge theories with Nf  fundamental fermions: also 
describe UV bosonic systems with same global symmetry. 

These provide a large set of IR-distinct field theories for the 
same set of trivial-SPT phase transitions of these bosons. 

Multiple universality classes for the same phase transition. 

Trivial gapped state
of bosons SPT phase of 

bosons

These different theories are ``weakly dual” (have the same local operators, the same global 
symmetry, and phase diagram) but are not ``strongly dual”. 



Other interesting phenomena: Unnecessary phase 
transitions

Quantum critical points usually separate two distinct phases 
of matter. 

However we find examples where there is a quantum critical 
line living inside a single phase. 

Nf  = 0 (mod 4), Nc = 0 (mod 4) (and Nf big enough)

``Unnecessary continuous phase transition”  

(can go around the transition analogous to liquid-gas but 
here the transition is continuous!)

Other examples can be constructed without emergent gauge fields. 



SU(2) gauge theory with Nf flavors of adjoint fermionic 
matter

Important to add `heavy’ (bosonic) spectator matter fields z in 
fundamental representation. 

 Global symmetry SO(2 Nf ) x T (with c in vector representation)

View this gauge theory as IR description of some UV system of 
fermions with global  SO(2 Nf ) x T  symmetry. 

L =  ̄ (�i�µ(@µ � iaµ) +m) +
1

2g2
tr

�
f2
µ⌫

�
( + LM [z, a])

adjoint

This describes a theory with local fermions! 

c ⇠ ✏ijk( ¯ i j) k is a gauge invariant fermion.



 Remarks on adjoint SU(2) gauge theory

m = 0:  The conformal window with adjoint matter occurs at lower Nf  than with 
fundamental matter. 

Asymptotic freedom lost at Nf ≧ 3.  

In absence of spectator fundamental scalars, theory has unbreakable electric strings in 
fundamental representation

Corresponding  ``one-form” symmetry (Gaiotto, Kapustin, Seiberg, Willett, 2015). 

 Important: spectator fundamental scalars explicitly break the 1-form symmetry

 To completely specify the theory, must specify action of global symmetries on 
spectators. 



                                                     Large Nf 

Story similar to previous examples. 

Massless, IR-free theory: deconfined 
quantum critical point between
between trivial and SPT phases of fermions. 

Interesting examples of band-theory-forbidden 
criticality between band insulators. 

m

g

Trivial fermion phase SPT fermion phase

Deconfined quantum critical point (IR free 
for large Nf)  



Nf = 1

Important theory in both condensed matter and high energy physics

Condensed matter: Physical fermions with  U(1) x T symmetry 

- a familiar much-studied system   

Topological superconductor (``class A III”) of importance in many other problems

  



Nf = 1

Important theory in both condensed matter and high energy physics

Condensed matter: Physical fermions with  U(1) x T symmetry 

- a familiar much-studied system   

Topological superconductor (``class A III”) of importance in many other problems

High-energy: Gauge theory is a deformation of famous N = 2 Seiberg-Witten theory 

Recent papers:  Anber and Poppitz; Cordova and Dumitrescu; Bi and TS.  



 IR physics  of SU(2) YM with Nf   = 1 adjoint fermion

 . 

m = 0:  Possibly conformal  from existing numerics (eg,  Athenodorou, Bennett, Bergner, 
Lucini, 2015) . 

m ≠0, large:  Expect confined, symmetry preserving,  phases (no induced theta term 
for dynamical gauge field). 

Topological distinction between two ``trivial” phases at large  |m| ?? 

Trivial
insulator

Topological 
insulator ??

m

Conformal? 

?? ??



Phase diagram  of SU(2) YM + Nf   = 1 adjoint fermion 

C. Wang, TS, 2014
Freed, Hopkins, 2016

SPT phases of fermions with U(1)⇥ T are classified by Z8 ⇥ Z2.

Label by (k,s) with k = (0,1,2,…..,7) and s = (0,1) . 

In gauge theory calculating partition function ratio shows that 
phase with m > 0 is (k,0) with k odd. 

Precise T-implementation (including on heavy z bosons) determines which odd k. 

Choose z a Kramers doublet => get k = -1. 

Trivial
insulator

Topological 
insulator

m

Conformal? 

?? ??



Completing the phase diagram

Gauge theory description:  one possible evolution from trivial to topological insulator. 

Free fermion theory: another possible  evolution between same two phases. 

 

Trivial
insulator

Topological 
insulator 

m

Conformal? 

?? ??



Topological quantum criticality of fermions

 Could gauge theory and free fermion descriptions be the same??

Trivial
insulator

Topological 
insulator (k = -1)

m

Massless Dirac fermion

�̄ (�µ@µ +m)�

Trivial
insulator

Topological 
insulator (k = -1) 

m

Conformal? 

 ̄ (�µ(@µ � iaµ) +m) + 1
2g2 tr(fµ⌫)2

The two massless theories  have same local operators, and (almost) the same 
ordinary global symmetries. 

``Wild” possibility:  Perhaps they are the same theory in the IR?  

??



Could these two 3+1-D theories really be IR dual? 

How to tell? 

At the very least check that emergent symmetries and their anomalies match at 
massless point. 

Must include both ordinary (0-form) and 1-form global symmetries.  

 

 



Emergent symmetries: massless free Dirac fermion 

Single Dirac fermion = 2 Weyl fermions

Emergent symmetry

SU(2)⇥U(1)
Z2

SU(2) rotates the two Weyl fermions

U(1): axial rotation

(+ discrete symmetries: T, P, C) 

Several anomalies (chiral anomaly for U(1), and Witten anomaly for SU(2)) 



Emergent symmetries: massless SU(2) YM + Nf   = 1 
adjoint Dirac fermion 

(Unbreakable electric loops in spin-1/2 representation)

Quantum e↵ects reduce axial symmetry to Z8.

Emergent 0-form symmetry:

SU(2)⇥Z8

Z2

+ 1-form symmetry

Compare with free massless Dirac fermion:  Z8 is replaced by U(1) and no 1-form 
symmetry. 

Can match 0-form symmetries/anomalies  if Z8 is dynamically enhanced to U(1) in IR
 



Could these two 3+1-D theories really be IR dual? 

How to tell? 

At the very least check that emergent symmetries and their anomalies match at 
massless point. 

Must include both ordinary (0-form) and 1-form global symmetries.  

Good news: If Z8 of gauge theory is dynamically enhanced to U(1) in IR, then free 
Dirac fermion can match 0-form symmetries and anomalies. 

 

 



Could these two 3+1-D theories really be IR dual? 

How to tell? 

At the very least check that emergent symmetries and their anomalies match at 
massless point. 

Must include both ordinary (0-form) and 1-form global symmetries.  

Good news: If Z8 of gauge theory is dynamically enhanced to U(1) in IR, then free 
Dirac fermion can match 0-form symmetries and anomalies. 

Bad news: Extra anomalies involving the 1-form symmetry (mixed anomaly with Z8, 
and with gravity)  - no analog in free Dirac theory. 

Cordova, Dumitrescu, 2018 

 



Implications 

Massless SU(2) YM + Nf   = 1 adjoint Dirac fermion cannot just flow to free 
massless Dirac fermion. 

A better alternate: 

Match the 1-form anomalies by augmenting the free Dirac fermion with  a gapped 
topological sector that has the right 1-form anomalies. 

Suggestion for a specific TQFT in our paper: `loop fractionalized’ fermionic Z2 gauge theory 
enriched by Z8, 1-form symmetries 

Other candidate phases: Cordova, Dumitrescu  

Massless SU(2) YM  theory + 

Nf   = 1 adjoint Dirac fermion
A free Dirac theory + a gapped TQFT



Adding in spectator boson

Spectator boson breaks 1-form symmetry. 

But in the TQFT, the loops have `fractionalized’ => topological order survives even 
when 1-form symmetry is broken, or if a small mass is added. 

Massless SU(2) YM  theory + 

Nf   = 1 adjoint Dirac fermion
A free Dirac theory + a gapped TQFT

56

FIG. 10: If the SU(2)+NA
f = 1 theory is dual to a single Dirac fermion supplemented by a Z2 topological

order, the adjoint fermion mass will not drive the system to the large mass confined phase immediately as

the Z2 topological order is stable against small perturbation. Increasing the fermion mass the Z2 topological

order should go through another phase transition to the confined phases.

either n = �1 or n = 3 Class AIII topological superconductors (depending on the time reversal

properties of the spectators).

VII. DISCUSSION

From a condensed matter perspective, the main results in this paper are the numerous examples

of unusual quantum critical phenomena. Here we briefly describe some general lessons we can learn.

1. The possibility of multiple universality classes for the same phase transition (of which we

found many examples) arises in many di↵erent contexts. As far as we are aware previous

examples of this phenomenon are known only in systems with quenched randomness (for

instance the ±J spin glass). An important context is at heavy electron quantum critical

points between a Fermi liquid and an antiferromagnetic metal. The standard Moriya-Hertz-

Millis ‘spin density wave’ theory for the onset of antiferromagnetism in a metal has di�culties

with the phenomenology observed in some systems. Alternate theories invoke the idea of

Kondo breakdown and posit a distinct universality class. However it has never been very

clear whether the resulting antiferromagnetic phase is necessarily sharply distinct from the

one obtained through the spin density wave route. It is interesting therefore to contemplate

that the heavy fermi liquid to antiferromagnetic metal transition may admit (at least) two

distinct universality classes between the same two phases.

Gauge theory phase diagram 
if duality is right



Summary   

Simple examples illustrating many surprising quantum critical 
phenomena. 

1. Deconfined quantum criticality in 3+1-dimensions

2.  Phase transitions described by multiple universality classes

3. Unnecessary continuous phase transitions 

4.  Band-theory-forbidden critical points between band insulators

Bonus:  A striking possible duality of fermions in 3 +1-D.  

Trivial SPT 

Massless SU(2) YM  theory + 

Nf   = 1 adjoint Dirac fermion
A free Dirac theory + a gapped TQFT


