
KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Fakultät für Physik
Institut für Experimentelle Teilchenphysik

Günter Quast

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

KET Workshop Software & Computing

Integration of Clouds in HEP Grid

Grid to Cloud

· · ·

· · ·

The original hierarchical World Wide LHC Computing Grid

Tier0 @ CERN

· · ·

Tier 1

Tier 2

Tier 1

Tier 3

Defined by
 WLCG MOU

All centers “owned” by particle physics groups
 - common operating system (scientific linux)
 - common services, in particular grid middleware
 - common software stack

Grid to Cloud

· · ·

· · ·

Tier0 @ CERN

· · ·

Tier 1

Tier 2

Tier 1

Tier 3

- LHC One Network connecting Tier2 / Tier2
- Data federations with remote access
- addition of “diskless Tier3”, and of Cloud Resources

Today with many more network connections (Grid → Mesh)
 and first cloud additions

Network LHC ONE

Cloud Compute resource

Disk & Compute resource in Cloud

Grid to Cloud

Future: (very ?) complex network of heterogeneous resources

Cloud Compute resource Disk & Compute resource in Cloud

T0

non-WLCG authentication

Pools of regional
 resources

Data Cache

€€

Challenges: (dynamic) workflow management and scheduling, optimisation of
 data placement, (dynamic) resource provisioning, authentication, billing, …

Classical WLCG center

Cloud-enabling Technologies in HEP

CernVM:
● Virtual machine based on Scientific Linux (maintained by CERN)
● Very lightweight, can be directly deployed on various cloud sites

Container: Docker or Singularity
● encapsulates services, experiment software and user code

CernVM-FS:
● On-demand HTTP based file system (Caching via HTTP Proxy)
● Many big experiments use it to deploy software to WLCG

compute centres
● works excellently also on cloud sites

HTCondor:
● Free and open-source batch system commonly used in HEP
● Excellent with integrating dynamic worker nodes (even behind

NATed networks)

xRootD and data federations for remote access

Cloud Management Interface, e.g. ROCED [KIT]:
● Cloud scheduler that supports multiple cloud APIs (OpenStack,

 Amazon EC2 and other commercial providers, special HPC site adapters)
● Easily extendable thanks to modular design
 Parses HTCondor ClassAds and boots VMs on cloud sites
 depending on the number of queued jobs

Principle of including external resources

Virtual
Machines

Cloud
Resource
Providers

central
software

application
database

data

Job Scheduler

Cloud Interface

e.g.
requests

VMs

runs

jobs
boot VMs

automated, dynamic provisioning of cloud resources
 for suitable classes of jobs

monitoring
& control

Responsibility of cloud provider

Existing Examples

e.g. Super-MUC at LRZ in Munich,
SDCC at CMS or the new bwHPC
Cluster in Freiburg (ATLAS/CMS/LHCb)

 e.g Open Stack

 ATLAS & CMS
 HLT-Farms during LS 1

– no Grid services / authentication

– fast, but small and expensive disk

– often small WAN bandwidth

– different „Site Policies“

 special solutions for every
 single case → personnel !

- Cloud-Resources
 - private (e.g. institute clusters)
 - commercial (Amazon, Google, Telekom …)

 left R&D Phase since long

 - HPC – Cluster
 - many HEP applications run
 - MPI interfaces and
 SAN not needed for HEP

 → an expensive way!

- Commercial providers,

 e.g.

 IaaS provided by two
 commercial consortia
 in final project phase

- working with industry is different
- must define requirements precisely
 & monitor results

feeling of project participant:
 “spent far more (unfunded)
 time than initially estimated”

Existing Examples (2)

(OSG) in the US
“Submit Locally, Run Globally”

drive development of Science Clouds,
 centered around HTCondor, provide
 full software stack & documentation,
 organize schools and support

 Bursting into Google Cloud (2016)

Existing Examples (3)

Amazon Cloud (Amazon Web Services)
provided to CMS via FNAL Tier1
– more than doubled available CPU at
 Tier Ones
– sponsored by provider, but cost on
 spot market approaching reasonable
 levels: (FNAL: 0.9 Cent/ CPU hour,
 Amazon: 1.4 Cent/CPU hour)

bwFOR cluster NEMO in Freiburg:
(for Neuro-Science, Elementary Particle
 Physics and Microsystems Engineering)

– fully virtualised set-up; controlled
 by ROCED (KIT) and HTCondor

– Production system scaled up to 11k
 virtualised cores, more than 7 million
 CPU hours of user jobs processed in
 four months

– saturating 20 GBit/s BelWü link between
 Karlsruhe - Freiburg and NRG Grid storage at GridKa

a similar project with Amazon also
 by ATLAS via BNL

a word on Opportunistic Resources

Opportunistic Resource: Any resources not permanently dedicated to, but
 temporarily available for a specific task, user or group.

● very common in university environments:
 – university clusters shared by many groups and communities
 – DFG-funded resources,
 typically allocated on approved request only for given time or # of CPU hours,
 only temporary storage as long as project runs
 – “empty” cycles on HPC systems
 – in the future:
 - cheap commercial CPU cycles
 to cover peak loads or to benefit from special offers on the “spot market”
 - dedicated “Science Clouds”

● Challenges:
– often not at all corresponding to “typical” HEP setups
 need easy and light-weight access methods
– must be dynamically managed and integrated into workflows

 need automatic cloud and batch interfaces
 – need careful monitoring of remote resource usage
 e.g. to avoid expensive network traffic from/to commercial cloud sites
 – “every such site is special”
 can only be integrated by “local” personnel
 – may require special access rights and authentication
 may need local “proxy” to submit jobs

Opportunistic Resources @ KIT

Longtime experience @ KIT with virtualisation,
 opportunistic resources and containers:
● Software development

 ViBatch, Roced (now → CBOalD), NaviX

● Virtualisation with Xen, kvm, OpenStack

● Containers Docker and Singularity

● Opportunistic Resources
- Test systems (incl. Desktops)
 with OpenStack and Docker
- HPC Clusters
 Ic1 @Uni Ka (ViBatch), ForHLR @KIT (Singularity),
 bwFORcluster NEMO @Uni Fr (OpenStack)
- commercial Cloud providers
 AWS, 1&1 Cloud Services, OTC, ExoScale

All controlled via a single HTCondor instance
 and cloud interface

many of them simultaneously and in production mode
 (see next slide)

Usage of Opportunistic Resources @ KIT

 Allocation of CPU Cores @ KIT with ROCED and HTCondor (July – Sept. 2018)

- ~3000 cores, dynamically allocated, at fives sites:
 bwFor NEMO (Fr), forHLR2 (Ka), TSystems (HelixNebula), local desktops & blade center

- low to medium I/O jobs, e.g. NNLO Calculations, Monte Carlo production, or
 generation of hybrid events by embedding MC in data

- Job scheduling is still partly “hand work”

Could Interface, here
ROCED (Responsive On-Demand Cloud-enabled Deployment):
 Interface between batch system (Torque, HTCondor) and cloud sites.

– monitoring of computing needs (jobs in queue) and resources

 – dynamic management of remote cloud resources:
 starting/stopping of virtualized remote worker nodes

 – site adapters “know” how to provide vitualized or containerized resources

https://github.com/roced-scheduler/ROCED

ROCED has grown over time

 – easy to integrate new providers

 – difficult to manage many providers for many users

needs refactoring and further modularization

 successor: CObalD
 – the opportunistic balancing Demon
 new development @ KIT for GridKa

https://github.com/roced-scheduler/ROCED

Caching

Caching is common solution for repeated access to the same data.
 Cache data as close as possible to the CPU !

 Suitable for
 – HEP workflows that process the same datasets frequently
 – CPU resources without permanent storage

Cache 1 Cache 2 Cache 3

Problematic on distributed resources with multiple caches:

Caching

Caching is common solution for repeated access to the same data.
 Cache data as close as possible to the CPU !

 Suitable for
 – HEP workflows that process the same datasets frequently
 – CPU resources without permanent storage

Cache 1 Cache 2 Cache 3

Problematic on distributed resources with multiple caches:

Caching

Caching is common solution for repeated access to the same data.
 Cache data as close as possible to the CPU !

 Suitable for
 – HEP workflows that process the same datasets frequently
 – CPU resources without permanent storage

Cache 1 Cache 2 Cache 3

Problematic on distributed resources with multiple caches:

Caching

Caching is common solution for repeated access to the same data.
 Cache data as close as possible to the CPU !

 Suitable for
 – HEP workflows that process the same datasets frequently
 – CPU resources without permanent storage

Cache 1 Cache 2 Cache 3

Waste of storage capacity due to replication of data!

 ⇒ Caches must be “coordinated” !

Problematic on distributed resources with multiple caches:

Coordinated Caching

Basic features for caching are provided by

 can handle job-to-resource scheduling

Batch System

Job Flow

Worker
Node

Worker
Node

Job
Submission

Central Management Opportunistic Resource

Grid
Storage
Element

Resource Pool

HEP
User

Data
Flow

Worker
Node

Coordinated Caching

Basic features for caching are provided by

 can handle job-to-resource scheduling

Batch System

Job Flow

Worker
Node

Worker
Node

Job
Submission

Central Management Opportunistic Resource

Grid
Storage
Element

Resource Pool

Cache
XRootD

Proxy

HEP
User

Data
Flow

Worker
Node

Coordinated Caching

Basic features for caching are provided by

 can handle job-to-resource scheduling

Batch System

Job Flow

Cache
Information

Worker
Node

Worker
Node

Job To Data
Matching

Job
Submission

Central Management Opportunistic Resource

Grid
Storage
Element

Resource Pool

Cache
XRootD

Proxy

HEP
User

Data
Flow

Worker
Node

Coordination
Service

Coordination Service NaviX under development at KIT
 based on long-term experience: ”Data Locality via Coordinated Caching for Distributed Processing”,

 M. Fischer et al., J. Phys.: Conf. Ser.762 012011 (2016)

Scalability as a design feature of NaviX

ideally, use the same components for local, site and regional caching

Subordinate System

Batch System

Job Flow

Cache
Information

Worker
Node

Worker
Node

Job To Data
Matching

Job
Submission

Central Management Opportunistic Resource

Grid
Storage
Element

Resource Pool

Cache
XRootD

Proxy

HEP
User

Data
Flow

Worker
Node

Coordination
Service

 Sub-Management

Scalability as a design feature of NaviX

ideally, use the same components for local, site and regional caching

Batch System

Job Flow

Cache
Information

Worker
Node

Worker
Node

Job To Data
Matching

Job
Submission

Central Management Opportunistic Resource

Grid
Storage
Element

Resource Pool

Cache
XRootD

Proxy

HEP
User

Data
Flow

Worker
Node

Coordination
Service

Cache
Information

Job
Flow

Subordinate System

Batch System

Job Flow

Cache
Information

Worker
Node

Worker
Node

Job To Data
Matching

Job
Submission

Central Management Opportunistic Resource

Grid
Storage
Element

Resource Pool

Cache
XRootD

Proxy

HEP
User

Data
Flow

Worker
Node

Coordination
Service

• XRootD and HTCondor take care of hierarchical upscaling
• Job-to-Cache coordination can be performed at all levels with
 regard to the data location information of the subsystems.

 Sub-Management

National
collaboration

Regional
resources

Local
cluster

Institute
resources

...

Easy Setup of a working HEP-Site

“Tier3 must be supportable by University IT without special LHC skills”

● Local IT supports hardware and manages user accounts

● LHC experts operate OS and services from remote

basic Software:

● HTCondor Batch system

● XroodD server, redirector & Cache
 server and cache connected to data federation of supported experiment

● CERN-VM FS and Squid server
 access to experiment software

 Numerous instances already deployed at universities in the US

Frank Würthwein

“Tier3 in a Box”

● an easy way to provide a working HEP environment to physicists anywhere
● concept can (and should be !) extended to “Tier2 in a Box”
● can also set up remote production sites in cloud environments
● provide “opportunistic resources” to WLCG when not (fully) used locally

however: Need sufficient network bandwidth (≥100 Gb/sec) to benefit

Setting up the “Box”

– VM-image(s) or container(s) set-up by (small) group of experts

 can be very lean, as most of the required software comes via CERN-VM FS

 however, some providers require using their own images,
 allowing only moderate modifications

 in such cases: can run HEP applications in a container

– permanent services (Squid server, XrootD, …) also provided in virtual
 machines or containers, but
 sometimes difficult to guarantee presence of these services at a given site
 (requires permanently running instances)

– images may contain site-specific configurations
 (require automated) image and configuration management

Provisioning of VM-images (in particular) and containers
 requires additional R&D and funding for long-term support

Containers are much easier than virtual machines !

btw: since every one can contribute, this approach is
 very beneficial for the training of young physicists !

Blueprint (?) for the German contribution to LHC computing >2025 ?

€

Network

Jobs

Regional
Condor Pool

Data

Job Flow

Conclusions
Cloud technologies for HEP sites

 – have proven to work well and reliably

 – allow for sharing of resources between groups, institutes
 and scientific communities

 – give access to resources not available otherwise, incl. commercial providers

 – set-up of the scientific compute environment may happen “@home”:
 educational benefit for young people !

 – operate HEP sites with less effort: “Tier 2 / 3 out of the Box”

 – Data Caching enables “diskless sites” (i.e. sites without centrally managed
 data store): temporary resources in clouds, institute clusters, ...

 – Coordinated Caches in distributed environments reduce required disk
 space and increase bandwidth for data access

Cloud technologies are relevant future German contributions to LHC computing:

 – Virtualised T2 and T3 ?

 – bundle access to all national resources in one HTCondor pool ?

 – Disk Space @ T2 and T3 as (coordinated) caches ?

 ENDE

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 27
	Folie 28
	Folie 29

