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Grid to Cloud

The original hierarchical World Wide LHC Computing Grid

Defined by . o e -
WLCGMou | T Feres e s Terd

||l ]| . |HeES Tier 2

e | | E wr 2 = o B=g Tier 3

All centers “owned” by particle physics groups
- common operating system (scientific linux)
- common services, in particular grid middleware
- common software stack



Grid to Cloud

Today with many more network connections (Grid - Mesh)
and first cloud additions

—— Network LHC ONE

Cloud Compute resource

Disk & Compute resource in Cloud

Tier0 @ CERN

Tier 3

- LHC One Network connecting Tier2 / Tier2
- Data federations with remote access
- addition of “diskless Tier3”, and of Cloud Resources



Grid to Cloud

Future: (very ?) complex network of heterogeneous resources

Classical WLCG center

Cloud Compute resource Disk & Compute resource in Cloud

Data Cache non-WLCG authentication

Pools of regiona
resources

Challenges: (dynamic) workflow management and scheduling, optimisation of
data placement, (dynamic) resource provisioning, authentication, billing, ...




Cloud-enabling Technologies in HEP

CernVM:
* Virtual machine based on Scientific Linux (maintained by CERN) I Di Qer'erM
» Very lightweight, can be directly deployed on various cloud sites - K-
Container: Docker or Singularity 73\
. . \
e encapsulates services, experiment software and user code & \SJ
CernVM-ES:
* On-demand HTTP based file system (Caching via HTTP Proxy) R} Cemw
* Many big experiments use it to deploy software to WLCG ! File system

compute centres
« works excellently also on cloud sites

HTCondor: . e

* Free and open-source batch system commonly used in HEP > J'"COﬂdUI’

« Excellent with integrating dynamic worker nodes (even behind -
NATed networks)

XRootD and data federations for remote access T \ XRootD

Cloud Management Interface, e.g. ROCED [KIT]:

* Cloud scheduler that supports multiple cloud APIs (OpenStack,
Amazon EC2 and other commercial providers, special HPC site adapters)

« Easily extendable thanks to modular design ‘QROCED
Parses HTCondor ClassAds and boots VMs on cloud sites
depending on the number of queued jobs



Principle of including external resources

monitoring

C“‘
o
.
o

Job Scheduler

Cloud Interface

e.g. dRoceDp

Cloud ||
requests
g P Resource
VMs Providers l
N
\_

Responsibility of cloud provider

central
software

application
database

data

automated, dynamic provisioning of cloud resources

for suitable classes of jobs




Existing Examples

/- Cloud-Resources )
- private (e.g. institute clusters) (B ﬁ g

e.g Open Stack !
ll -
- commercial (Amazon, Google, Telekom . )ﬁ é\; iﬁ ATLAS & CMS
5\'—** “\‘ HLT-Farms during LS 1

left R&D Phase since long Kl_iw'—u
N —~L /

4 A— e — 18 . . )
- HPC — Cluster ' : ; — no Grid services / authentication

- many HEP applications run — fast, but small and expensive disk
- MPI interfaces and — often small WAN bandwidth
SAN not needed for HEP — different ,Site Policies"

— an expensive way! e.g. Super-MUC at LRZ in Munich, special solutions for every
SDCC at CMS or the new bwHPC Sing|e case - personne| I
\_ Cluster in Freiburg (ATLAS/CMS/LHCDb) \_ Y,
/ . H PEERT T« -Systems: $ \‘” I\ \
- Commercial providers, —— o IS  fE= .
EMBL \ e oNEonTA y
e.g. HZLKX EA
9- N&BUIA .

THESCIENCECLOUD

- working with industry is different

_ % - must define requirements precisely
laaS provided by two & monitor results
commercial consortia /F F ” feeling of project participant:

in final proj h FEEEIPAE? ° “spent far more (unfunded)
- al project phase time than initially estimated” /




Existing Examples (2)

-~

Ol (OSG) in the US
— ( ) “Submit Locally, Run Globally” Lo

OSG Sites,

drive development of Science Clouds, R L. Syracuse
centered around HTCondor, provide P iR
full software stack & documentation, e. Comet
organize schools and support SHu
i.e. NIKHEF

a N
Bursting into Google Cloud (2016)

Running Job Cores
143 Hours from 2016-11-14 00:00 to 2016-11-19 23:59 UTC
T L] L]

. Cores from Google
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Existing Examples (3)

Amazon Cloud (Amazon Web Services)

provided to CMS via FNAL Tierl

— more than doubled available CPU at
Tier Ones

— sponsored by provider, but cost on
spot market approaching reasonable
levels: (FNAL: 0.9 Cent/ CPU hour,

Amazon: 1.4 Cent/CPU hour)

a similar project with Amazon also
by ATLAS via BNL

N

Running jobs \
30 Days from 20180111 to 2016-02-11

F|CMS

Via Fermilab
HEPCloud:

CMS Amazon Web
Services (AWS)
Usage

Fermilab Ti_er-i

-
bwFOR cluster NEMO in Freiburg:

(for Neuro-Science, Elementary Particle
Physics and Microsystems Engineering) 20000

by ROCED (KIT) and HTCondor

— Production system scaled up to 11k z 4
virtualised cores, more than 7 million =
CPU hours of user jobs processed in
four months

— saturating 20 GBit/s BelWi link between

Slots requested

— Slots available

—— Slots draining
Jobs available

— fully virtualised set-up; controlled ?0000 I

i
RN T S Y R /S

A ..A\,"\.—\.,_NIL

Karlsruhe - Freiburg and NRG Grid storage at GrldKa

40
Tlme [days]

30




a word on Opportunistic Resources

Opportunistic Resource: Any resources not permanently dedicated to, but
temporarily available for a specific task, user or group.

* very common in university environments:
— university clusters shared by many groups and communities
— DFG-funded resources,
typically allocated on approved request only for given time or # of CPU hours,
only temporary storage as long as project runs
— “empty” cycles on HPC systems
— in the future:
- cheap commercial CPU cycles
to cover peak loads or to benefit from special offers on the “spot market”
- dedicated “Science Clouds”

* Challenges:
— often not at all corresponding to “typical” HEP setups

need easy and light-weight access methods
— must be dynamically managed and integrated into workflows
need automatic cloud and batch interfaces
— need careful monitoring of remote resource usage
e.g. to avoid expensive network traffic from/to commercial cloud sites
— “every such site is special”
can only be integrated by “local” personnel
— may require special access rights and authentication
may need local “proxy” to submit jobs



Opportunistic Resources @ KIT

Longtime experience @ KIT with virtualisation,
opportunistic resources and containers:

* Software development
ViBatch, Roced (how —» CBOQOalD), NaviX

coBalD ¥ YK S ECATHA
‘® 2018

ForHLR2

* Virtualisation with Xen, kvm, OpenStack

Sin

SLURM

* Containers Docker and Singularity

* Opportunistic Resources
- Test systems (incl. Desktops)
with OpenStack and Docker
- HPC Clusters

AWS/ELZL

NEMO

Docker

Icl @Uni Ka (ViBatch), FOrHLR @KIT (Singularity),
bwFORcluster NEMO @Uni Fr (OpenStack)

- commercial Cloud providers
AWS, 1&1 Cloud Services, OTC, ExoScale

All controlled via a sinale HTCondor instance
and cloud interface 4[ROCED

many of them simultaneously and in production mode
(see next slide)

2010

Libvirt

PBS

2007



CPUs

Usage of Opportunistic Resources @ KIT

Allocation of CPU Cores @ KIT with ROCED and HTCondor (July — Sept. 2018)

35K
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== Used at BWFORCLUSTER used at BWFORCLUSTER_SINGULARITY used at TSY == used at blade = used at condocker - used atdesktop
== LUsed at ekpsupermachines == used at forHLR2 == Usable CPUs

- ~3000 cores, dynamically allocated, at fives sites:
bwFor NEMO (Fr), forHLR2 (Ka), TSystems (HelixNebula), local desktops & blade center

- low to medium I/O jobs, e.g. NNLO Calculations, Monte Carlo production, or
generation of hybrid events by embedding MC in data

- Job scheduling is still partly “hand work”



Could Interface, here sRocep

ROCED (Responsive On-Demand Cloud-enabled Deployment):
Interface between batch system (Torque, HTCondor) and cloud sites.

— monitoring of computing needs (jobs in queue) and resources

— dynamic management of remote cloud resources:
starting/stopping of virtualized remote worker nodes

— site adapters “know” how to provide vitualized or containerized resources

wicgralion Adapters _Requirement Adapters
integrates booted compute nodes ... supplies information about needed
inta existing batch server compute nodes, e.g. queue size
HTCondor - ~ HTCondor
JSh s ROCED Core | Prace
Grid Engine Grid Engine
oot s https://github.com/roced-scheduler/ROCED
T :
_ Steadapers ROCED has grown over time
o Doot machines an varos Cloud — easy to integrate new providers
Hybrid HPC Cluster — difficult to manage many providers for many users
Commercial Providers . . .
[T needs refactoring and further modularization
Eucalypt
OpenNebula successor: CObalD
— the opportunistic balancing Demon =

new development @ KIT for GridKa



https://github.com/roced-scheduler/ROCED

Caching

Caching is common solution for repeated access to the same data.

Suitable for
— HEP workflows that process the same datasets frequently
— CPU resources without permanent storage

Problematic on distributed resources with multiple caches:

2l
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Cache 1 Cache 2 Cache 3
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Caching

Caching is common solution for repeated access to the same data.

Suitable for

— HEP workflows that process the same datasets frequently

— CPU resources without permanent storage

Problematic on distributed resources with multiple caches:

Cache 1

Cache 2

Cache 3

Waste of storage capacity due to replication of data!




Coordinated Caching

Basic features for caching are provided by ﬁ XRootD

HICond®r can handle job-to-resource scheduling

Central Management Opportunistic Resource

HEP

User Batch System @
Node _

}&% ob @] @] Job Flow Resource Pool [;?Ot\?v Grid

0]

Worker Storage
o Worker - 9
Submission HICOoNaY%r | M / Elemen




Coordinated Caching

{§
Basic features for caching are provided by @ XRootD

HICond®r can handle job-to-resource scheduling

Central Management Opportunistic Resource

XRootD
Proxy C Data

Flow
IE

u Batch Syst o] T

ser atch System y ,E @
}&% ob @] @] Job Flow Resource Pool | Grid
0]

Worker / Storage
o Worker )
Submission HICOoNaY%r M Elemen




Coordinated Caching

Basic features for caching are provided by ﬁ XRootD

HICond®r can handle job-to-resource scheduling

Central Management Opportunistic Resource

O Cache XRootD
Servi G formation === Proxy % Data
Job To Data Flow
Matching l g]]
User @] Ijsatch System /“/\m @

= Node BN

b @" @" Job Flow Resource Pool J Grid
Jo Worker Stora
N Worker ge€
Submission HTICondYr Node Node Elemen

Coordination Service NaviX under development at KIT

based on long-term experience: “Data Locality via Coordinated Caching for Distributed Processing”,
M. Fischer et al., J. Phys.: Conf. Ser.762 012011 (2016)



Scalability as a design feature of NaviX

ideally, use the same components for local, site and regional caching

Subordinate System

HEP

User @]
% Job

Submissid

Sub-Management 1t

Batch Systen

5

HICondsr

@] Job Flow:

Opportunistic Resourg

o Cache XRootD

Servi ¢ Information ™ Proxy
Job To Data
Matching

6@4—

|

Worker
Node

Resource Pool

Worker VKﬁ;gir
‘ Node

e

Data
Flow

£

Grid
Storage
Elemen



Scalability as a design feature of NaviX

ideally, use the same components for local, site and regional caching

* XRootD and HTCondor take care of hierarchical upscaling

* Job-to-Cache coordination can be performed at all levels with
regard to the data location information of the subsystems.

Central Management cCache
Information Subordinate System

o Sub-Management Nt Opportunistic Resource
SerVI 00re Cache XRootD
€ g Information Proxy : Data
JOb To pata Job To Data Flow
Match”‘]g Matching l

HEP Batch System @
Node
User -=]] Batch SySterT' @]] @ Job Flow: Resource Pool Grid
Worker
}&% @] n HIConds ; Eltgrrr?grf
Job Job
Submission HIConaSr Flow

e National Reglonal Institute Local
collaboration resources resources cluster




Easy Setup of a working HEP-Site

“Tier3 in a Box”

“Tier3 must be supportable by University IT without special LHC skills”

Frank Wirthwein

* Local IT supports hardware and manages user accounts

* LHC experts operate OS and services from remote
basic Software:
« HTCondor Batch system

* XroodD server, redirector & Cache
server and cache connected to data federation of supported experiment

* CERN-VM FS and Squid server
access to experiment software

Numerous instances already deployed at universities in the US

o N

an easy way to provide a working HEP environment to physicists anywhere
e concept can (and should be ! ) extended to “Tier2 in a Box”

* can also set up remote production sites in cloud environments

N prowde “opportunistic resources” to WLCG when not (fully) used locally

however Need sufficient network bandwidth (=100 Gb/sec) to benefit t




Setting up the “Box”

— VM-image(s) or container(s) set-up by (small) group of experts
can be very lean, as most of the required software comes via CERN-VM FS

however, some providers require using their own images,
allowing only moderate modifications

in such cases: can run HEP applications in a container
— permanent services (Squid server, XrootD, ...) also provided in virtual
machines or containers, but

sometimes difficult to guarantee presence of these services at a given site
(requires permanently running instances)

— images may contain site-specific configurations
(require automated) image and configuration management

Containers are much easier than virtual machines !

_ N

y

‘ Provisioning of VM-images (in particular) and containers ‘
- requires additional R&D and funding for long-term support

btw: since every one can contribute, this approach is
very beneficial for the training of young physicists !



Blueprint (?) for the German contribution to LHC computing >2025 ?

Jobs
Data

—p
Job Flow gHTCOﬂ ~ Regional
— Network THigh Throvangut Computing Condor Pool




Conclusions

Cloud technologies for HEP sites
— have proven to work well and reliably

— allow for sharing of resources between groups, institutes
and scientific communities

— give access to resources not available otherwise, incl. commercial providers

— set-up of the scientific compute environment may happen “@home”:
educational benefit for young people !

— operate HEP sites with less effort: “Tier 2 | 3 out of the Box”

— Data Caching enables “diskless sites” (i.e. sites without centrally managed
data store): temporary resources in clouds, institute clusters, ...

— Coordinated Caches in distributed environments reduce required disk
space and increase bandwidth for data access

Cloud technologies are relevant future German contributions to LHC computing:
— Virtualised T2 and T3 ?
— bundle access to all national resources in one HTCondor pool ?
— Disk Space @ T2 and T3 as (coordinated) caches ?
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