AT

Karlsruher Institut fir Technologie

Integration of Clouds in HEP Grid

Fakultat fur Physik
Institut fiir Experimentelle Teilchenphysik

KIT — Die Forschungsuniversitat in der Helmholtz-Gemeinschaft www.kit.edu

Grid to Cloud

The original hierarchical World Wide LHC Computing Grid

Defined by . o e -
WLCGMou | T Feres e s Terd

||l]| . |HeES Tier 2

e | | E wr 2 = o B=g Tier 3

All centers “owned” by particle physics groups
- common operating system (scientific linux)
- common services, in particular grid middleware
- common software stack

Grid to Cloud

Today with many more network connections (Grid - Mesh)
and first cloud additions

—— Network LHC ONE

Cloud Compute resource

Disk & Compute resource in Cloud

Tier0 @ CERN

Tier 3

- LHC One Network connecting Tier2 / Tier2
- Data federations with remote access
- addition of “diskless Tier3”, and of Cloud Resources

Grid to Cloud

Future: (very ?) complex network of heterogeneous resources

Classical WLCG center

Cloud Compute resource Disk & Compute resource in Cloud

Data Cache non-WLCG authentication

Pools of regiona
resources

Challenges: (dynamic) workflow management and scheduling, optimisation of
data placement, (dynamic) resource provisioning, authentication, billing, ...

Cloud-enabling Technologies in HEP

CernVM:
* Virtual machine based on Scientific Linux (maintained by CERN) I Di Qer'erM
» Very lightweight, can be directly deployed on various cloud sites - K-
Container: Docker or Singularity 73\
. . \
e encapsulates services, experiment software and user code & \SJ
CernVM-ES:
* On-demand HTTP based file system (Caching via HTTP Proxy) R} Cemw
* Many big experiments use it to deploy software to WLCG ! File system

compute centres
« works excellently also on cloud sites

HTCondor: . e

* Free and open-source batch system commonly used in HEP > J'"COﬂdUI’

« Excellent with integrating dynamic worker nodes (even behind -
NATed networks)

XRootD and data federations for remote access T \ XRootD

Cloud Management Interface, e.g. ROCED [KIT]:

* Cloud scheduler that supports multiple cloud APIs (OpenStack,
Amazon EC2 and other commercial providers, special HPC site adapters)

« Easily extendable thanks to modular design ‘QROCED
Parses HTCondor ClassAds and boots VMs on cloud sites
depending on the number of queued jobs

Principle of including external resources

monitoring

C“‘
o
.
o

Job Scheduler

Cloud Interface

e.g. dRoceDp

Cloud ||
requests
g P Resource
VMs Providers l
N
_

Responsibility of cloud provider

central
software

application
database

data

automated, dynamic provisioning of cloud resources

for suitable classes of jobs

Existing Examples

/- Cloud-Resources)
- private (e.g. institute clusters) (B ﬁ g

e.g Open Stack !
ll -
- commercial (Amazon, Google, Telekom .)ﬁ é\; iﬁ ATLAS & CMS
5\'—** “\‘ HLT-Farms during LS 1

left R&D Phase since long Kl_iw'—u
N —~L /

4 A— e — 18 . .)
- HPC — Cluster ' : ; — no Grid services / authentication

- many HEP applications run — fast, but small and expensive disk
- MPI interfaces and — often small WAN bandwidth
SAN not needed for HEP — different ,Site Policies"

— an expensive way! e.g. Super-MUC at LRZ in Munich, special solutions for every
SDCC at CMS or the new bwHPC Sing|e case - personne| I
_ Cluster in Freiburg (ATLAS/CMS/LHCDb) _ Y,
/ . H PEERT T« -Systems: $ \‘” I\ \
- Commercial providers, —— o IS fE= .
EMBL \ e oNEonTA y
e.g. HZLKX EA
9- N&BUIA .

THESCIENCECLOUD

- working with industry is different

_ % - must define requirements precisely
laaS provided by two & monitor results
commercial consortia /F F ” feeling of project participant:

in final proj h FEEEIPAE? ° “spent far more (unfunded)
- al project phase time than initially estimated” /

Existing Examples (2)

-~

Ol (OSG) in the US
— () “Submit Locally, Run Globally” Lo

OSG Sites,

drive development of Science Clouds, R L. Syracuse
centered around HTCondor, provide P iR
full software stack & documentation, e. Comet
organize schools and support SHu
i.e. NIKHEF

a N
Bursting into Google Cloud (2016)

Running Job Cores
143 Hours from 2016-11-14 00:00 to 2016-11-19 23:59 UTC
T L] L]

. Cores from Google

350.000

300,000 =

250,000 =

200.000 =

150.000 =

100.000

P ——== =5 EEgEE =
2016-11-14 2016-11-16 2016-11-17 216-11-18 2016-11-19

™ T3_US_HEP_Cloud W T1_US_FNAL W T0_CH_CERN W T2_US_Wisco M T2_CH_CERN_HLT
W T3_US_NotreDam O T2_CH_CERN B T2_DE DESY O T2_Us_Florid W T1LIT_CNAF
B T271IS Neh W T2 S Caltech B T2 1S Purdue H TS MIT BT

Existing Examples (3)

Amazon Cloud (Amazon Web Services)

provided to CMS via FNAL Tierl

— more than doubled available CPU at
Tier Ones

— sponsored by provider, but cost on
spot market approaching reasonable
levels: (FNAL: 0.9 Cent/ CPU hour,

Amazon: 1.4 Cent/CPU hour)

a similar project with Amazon also
by ATLAS via BNL

N

Running jobs \
30 Days from 20180111 to 2016-02-11

F|CMS

Via Fermilab
HEPCloud:

CMS Amazon Web
Services (AWS)
Usage

Fermilab Ti_er-i

-
bwFOR cluster NEMO in Freiburg:

(for Neuro-Science, Elementary Particle
Physics and Microsystems Engineering) 20000

by ROCED (KIT) and HTCondor

— Production system scaled up to 11k z 4
virtualised cores, more than 7 million =
CPU hours of user jobs processed in
four months

— saturating 20 GBit/s BelWi link between

Slots requested

— Slots available

—— Slots draining
Jobs available

— fully virtualised set-up; controlled ?0000 I

i
RN T S Y R /S

A ..A\,"\.—\.,_NIL

Karlsruhe - Freiburg and NRG Grid storage at GrldKa

40
Tlme [days]

30

a word on Opportunistic Resources

Opportunistic Resource: Any resources not permanently dedicated to, but
temporarily available for a specific task, user or group.

* very common in university environments:
— university clusters shared by many groups and communities
— DFG-funded resources,
typically allocated on approved request only for given time or # of CPU hours,
only temporary storage as long as project runs
— “empty” cycles on HPC systems
— in the future:
- cheap commercial CPU cycles
to cover peak loads or to benefit from special offers on the “spot market”
- dedicated “Science Clouds”

* Challenges:
— often not at all corresponding to “typical” HEP setups

need easy and light-weight access methods
— must be dynamically managed and integrated into workflows
need automatic cloud and batch interfaces
— need careful monitoring of remote resource usage
e.g. to avoid expensive network traffic from/to commercial cloud sites
— “every such site is special”
can only be integrated by “local” personnel
— may require special access rights and authentication
may need local “proxy” to submit jobs

Opportunistic Resources @ KIT

Longtime experience @ KIT with virtualisation,
opportunistic resources and containers:

* Software development
ViBatch, Roced (how —» CBOQOalD), NaviX

coBalD ¥ YK S ECATHA
‘® 2018

ForHLR2

* Virtualisation with Xen, kvm, OpenStack

Sin

SLURM

* Containers Docker and Singularity

* Opportunistic Resources
- Test systems (incl. Desktops)
with OpenStack and Docker
- HPC Clusters

AWS/ELZL

NEMO

Docker

Icl @Uni Ka (ViBatch), FOrHLR @KIT (Singularity),
bwFORcluster NEMO @Uni Fr (OpenStack)

- commercial Cloud providers
AWS, 1&1 Cloud Services, OTC, ExoScale

All controlled via a sinale HTCondor instance
and cloud interface 4[ROCED

many of them simultaneously and in production mode
(see next slide)

2010

Libvirt

PBS

2007

CPUs

Usage of Opportunistic Resources @ KIT

Allocation of CPU Cores @ KIT with ROCED and HTCondor (July — Sept. 2018)

35K

30K

20K

10K

500

| |

7124 8/1 8/8 8/16 g/24 a1

== Used at BWFORCLUSTER used at BWFORCLUSTER_SINGULARITY used at TSY == used at blade = used at condocker - used atdesktop
== LUsed at ekpsupermachines == used at forHLR2 == Usable CPUs

- ~3000 cores, dynamically allocated, at fives sites:
bwFor NEMO (Fr), forHLR2 (Ka), TSystems (HelixNebula), local desktops & blade center

- low to medium I/O jobs, e.g. NNLO Calculations, Monte Carlo production, or
generation of hybrid events by embedding MC in data

- Job scheduling is still partly “hand work”

Could Interface, here sRocep

ROCED (Responsive On-Demand Cloud-enabled Deployment):
Interface between batch system (Torque, HTCondor) and cloud sites.

— monitoring of computing needs (jobs in queue) and resources

— dynamic management of remote cloud resources:
starting/stopping of virtualized remote worker nodes

— site adapters “know” how to provide vitualized or containerized resources

wicgralion Adapters _Requirement Adapters
integrates booted compute nodes ... supplies information about needed
inta existing batch server compute nodes, e.g. queue size
HTCondor - ~ HTCondor
JSh s ROCED Core | Prace
Grid Engine Grid Engine
oot s https://github.com/roced-scheduler/ROCED
T :
_ Steadapers ROCED has grown over time
o Doot machines an varos Cloud — easy to integrate new providers
Hybrid HPC Cluster — difficult to manage many providers for many users
Commercial Providers . . .
[T needs refactoring and further modularization
Eucalypt
OpenNebula successor: CObalD
— the opportunistic balancing Demon =

new development @ KIT for GridKa

https://github.com/roced-scheduler/ROCED

Caching

Caching is common solution for repeated access to the same data.

Suitable for
— HEP workflows that process the same datasets frequently
— CPU resources without permanent storage

Problematic on distributed resources with multiple caches:

2l

E E

Cache 1 Cache 2 Cache 3

Caching

Caching is common solution for repeated access to the same data.

Suitable for
— HEP workflows that process the same datasets frequently
— CPU resources without permanent storage

Problematic on distributed resources with multiple caches:

QLR

— e —
— — —
— — —
— [rm— —
— — —

Cache 1 Cache 2 Cache 3

Caching

Caching is common solution for repeated access to the same data.

Suitable for
— HEP workflows that process the same datasets frequently
— CPU resources without permanent storage

Problematic on distributed resources with multiple caches:

Cache 1 Cache 2 Cache 3

Caching

Caching is common solution for repeated access to the same data.

Suitable for

— HEP workflows that process the same datasets frequently

— CPU resources without permanent storage

Problematic on distributed resources with multiple caches:

Cache 1

Cache 2

Cache 3

Waste of storage capacity due to replication of data!

Coordinated Caching

Basic features for caching are provided by ﬁ XRootD

HICond®r can handle job-to-resource scheduling

Central Management Opportunistic Resource

HEP

User Batch System @
Node _

}&% ob @] @] Job Flow Resource Pool [;?Ot\?v Grid

0]

Worker Storage
o Worker - 9
Submission HICOoNaY%r | M / Elemen

Coordinated Caching

{§
Basic features for caching are provided by @ XRootD

HICond®r can handle job-to-resource scheduling

Central Management Opportunistic Resource

XRootD
Proxy C Data

Flow
IE

u Batch Syst o] T

ser atch System y ,E @
}&% ob @] @] Job Flow Resource Pool | Grid
0]

Worker / Storage
o Worker)
Submission HICOoNaY%r M Elemen

Coordinated Caching

Basic features for caching are provided by ﬁ XRootD

HICond®r can handle job-to-resource scheduling

Central Management Opportunistic Resource

O Cache XRootD
Servi G formation === Proxy % Data
Job To Data Flow
Matching l g]]
User @] Ijsatch System /“/\m @

= Node BN

b @" @" Job Flow Resource Pool J Grid
Jo Worker Stora
N Worker ge€
Submission HTICondYr Node Node Elemen

Coordination Service NaviX under development at KIT

based on long-term experience: “Data Locality via Coordinated Caching for Distributed Processing”,
M. Fischer et al., J. Phys.: Conf. Ser.762 012011 (2016)

Scalability as a design feature of NaviX

ideally, use the same components for local, site and regional caching

Subordinate System

HEP

User @]
% Job

Submissid

Sub-Management 1t

Batch Systen

5

HICondsr

@] Job Flow:

Opportunistic Resourg

o Cache XRootD

Servi ¢ Information ™ Proxy
Job To Data
Matching

6@4—

|

Worker
Node

Resource Pool

Worker VKﬁ;gir
‘ Node

e

Data
Flow

£

Grid
Storage
Elemen

Scalability as a design feature of NaviX

ideally, use the same components for local, site and regional caching

* XRootD and HTCondor take care of hierarchical upscaling

* Job-to-Cache coordination can be performed at all levels with
regard to the data location information of the subsystems.

Central Management cCache
Information Subordinate System

o Sub-Management Nt Opportunistic Resource
SerVI 00re Cache XRootD
€ g Information Proxy : Data
JOb To pata Job To Data Flow
Match”‘]g Matching l

HEP Batch System @
Node
User -=]] Batch SySterT' @]] @ Job Flow: Resource Pool Grid
Worker
}&% @] n HIConds ; Eltgrrr?grf
Job Job
Submission HIConaSr Flow

e National Reglonal Institute Local
collaboration resources resources cluster

Easy Setup of a working HEP-Site

“Tier3 in a Box”

“Tier3 must be supportable by University IT without special LHC skills”

Frank Wirthwein

* Local IT supports hardware and manages user accounts

* LHC experts operate OS and services from remote
basic Software:
« HTCondor Batch system

* XroodD server, redirector & Cache
server and cache connected to data federation of supported experiment

* CERN-VM FS and Squid server
access to experiment software

Numerous instances already deployed at universities in the US

o N

an easy way to provide a working HEP environment to physicists anywhere
e concept can (and should be !) extended to “Tier2 in a Box”

* can also set up remote production sites in cloud environments

N prowde “opportunistic resources” to WLCG when not (fully) used locally

however Need sufficient network bandwidth (=100 Gb/sec) to benefit t

Setting up the “Box”

— VM-image(s) or container(s) set-up by (small) group of experts
can be very lean, as most of the required software comes via CERN-VM FS

however, some providers require using their own images,
allowing only moderate modifications

in such cases: can run HEP applications in a container
— permanent services (Squid server, XrootD, ...) also provided in virtual
machines or containers, but

sometimes difficult to guarantee presence of these services at a given site
(requires permanently running instances)

— images may contain site-specific configurations
(require automated) image and configuration management

Containers are much easier than virtual machines !

_ N

y

‘ Provisioning of VM-images (in particular) and containers ‘
- requires additional R&D and funding for long-term support

btw: since every one can contribute, this approach is
very beneficial for the training of young physicists !

Blueprint (?) for the German contribution to LHC computing >2025 ?

Jobs
Data

—p
Job Flow gHTCOﬂ ~ Regional
— Network THigh Throvangut Computing Condor Pool

Conclusions

Cloud technologies for HEP sites
— have proven to work well and reliably

— allow for sharing of resources between groups, institutes
and scientific communities

— give access to resources not available otherwise, incl. commercial providers

— set-up of the scientific compute environment may happen “@home”:
educational benefit for young people !

— operate HEP sites with less effort: “Tier 2 | 3 out of the Box”

— Data Caching enables “diskless sites” (i.e. sites without centrally managed
data store): temporary resources in clouds, institute clusters, ...

— Coordinated Caches in distributed environments reduce required disk
space and increase bandwidth for data access

Cloud technologies are relevant future German contributions to LHC computing:
— Virtualised T2 and T3 ?
— bundle access to all national resources in one HTCondor pool ?
— Disk Space @ T2 and T3 as (coordinated) caches ?

ENDE

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 27
	Folie 28
	Folie 29

