LUXE - A few thoughts on lasers

LUXE Meeting, August 9th 2018

Andreas R. Maier

CFEL, UHH andreas.maier@cfel.de lux.cfel.de

Parameters and discussion based on M. Wing et al., https://indico.desy.de/indico/event/21203/contribution/3/material/0/

intensity

- > we target for a peak intensity I₀ about 10²⁰ W/cm²
- > focal spot about 10 µm FWHM (intensity)
- > focal spot: sinc, i.e., fourier-transformed flat-top
- > a₀ about 6

power

- > 100 TW on target
- > pulse length 35 fs FWHM (intensity)
- > pulse energy 3.5 J on target
- > pulse temporal profile (intensity) is gaussian

laser

- > TiSa at 800 nm wavelength
- > 1Hz rep-rate 10Hz possible but more challenging
- > about 1 m focal length and 10 cm beam diameter (flat-top)

some remarks (I)

general properties

- > 800 nm central wavelength
- > 40 nm FWHM bandwidth in focus
- > linearly polarized
- > carrier-envelope phase can be stabilized

real laser pulses

- > there might be residual spatiotemporal couplings on the pulse:
- > need careful tuning
 - > pulse front tilt, from spatial or angular wavelength chirp in the beam
 - > linear and higher order frequency chirp, if the pulse is not fully compressed
- > parameter jitters
 - > laser energy few percent rms
 - > pulse length few percent rms
 - > focus spot size fraction of a spot size rms
- > drifts in parameters (energy, bandwidth, direction, ...) if not carefully stabilized

some remarks (II)

diagnostics

- > relative changes can be measured relatively easy
- > absolute values might be more tricky
- > we have solutions to measure required parameters
- > diagnostics should be considered from the very beginning

what can we tune

- > pulse length making the pulse longer at constant energy
- > energy lower/attenuate the energy
- > focus spot size by shifting the focus position, but not straightforward
- > ...

in real life...

Cost Estimate (I)

5 M€ rough estimate

- > with headroom in parameters
- > focus on availability
- > excluding laser lab

running costs

- > 10% of invest per year for replacement of optics, spares
- > requires 2 FTE/year to build, and later operate
- > saving on running costs or man power does not pay off

Cost Estimate (II)

- > most expensive part is the green pump lasers, roughly 2/3 of the cost
- > about 10% conversion from green pump energy to useful laser energy in the focus
- > whatever requires more energy causes costs
- > you can save some budget once the laser design becomes more clear
- > comparing prices for different systems consider:
 - > the number that is typically used as a benchmark is power, i.e., TW, which can be misleading
 - > typically power is quoted after the compressor neglecting losses in beam transport and due to imperfect focussing
 - > just assuming an optimistic pulse length, e.g., 25 fs instead of 35 fs, saves you 30% of pump power in the budget

Green Pump-to-Target	0,10
Green Pump-to-TiSa efficiency	0,25
compressor efficiency	0,60
beamline transmission	0,80
focusability	0,80

Summary

- > laser system can provide necessary parameters
- > this discussion is simplified
- > need to develop parameters and requirements

