CMS pixel sensors and modules: lessons learned and the road ahead

Jory Sonneveld on behalf of the CMS tracker group

jory.sonneveld@cern.ch

12th Terascale Detector Workshop, Dresden

High luminosity LHC

High luminosity → high precision

Much better precision for Higgs coupling strengths and measurements like $B_s^{0} \rightarrow \mu^+\mu^ B \rightarrow \mu\mu$ measurements are expected to

achieve 6.8σ

precision

LHC: a challenging environment

CMS phase 2 pixel detector

- Coverage up to η =4 and high-rate capability
- Almost vertical incidence in forward pixel detector
- Serial powering to keep same powering services
- Option to replace L1 after half lifetime
- CO₂ cooling for reduced material

TEPX

TFPX

2x(8+4) endcap

disks for $\eta=4$

4 barrel layers

TBPX

			phase 1 < 2024	phase 2 >= 2024
Phase 1 → 2 <u>CMS pixel layout</u> <u>CMS-TDR-011</u> <u>CMS-TDR-014</u>		Disks, layers, reach	4 layers, 3 disks to η=2.5	4 layers, 12 disks to η=4
		Number of pixels	124 · 10 ⁶	1949 · 10 ⁶
		Pixel size	100×150 μm²	100×25 μm², 50×50 μm²
		Active silicon area	1.95 m ²	4.9 m ²
	Module stacking for both phase 1	Readout chips	PSI46dig/PROC600 250 nm	RD53B = CROC 65 nm
	and phase 2:	Number of ROCs	1856 · 16 ROCs	1156 · 2 + 2736 · 4 ROCs
	Flex print	Sensor type	n⁺-n planar 285 µm	n⁺-p planar/3D 100-150 µm
	wire bonded glued sensor bump bonded ROCs	Material budget Mechanical support	 Na Na CMS Simulation I.4 I.5 I.4 I.4 I.5 I.4 I.4 I.5 	1.6 Phase-2 Tracker Inter of Taxing volume 1.4 Between T and OT 1.2 Intel of Taxing volume 1.4 Inter of T and OT 1.2 Intel of Taxing volume 1.4 Intel of Taxing volume 1.4 Intel of Taxing volume 1.4 Intel of Taxing volume 1.2 Intel of Taxing volume 1.2 Intel of Taxing volume 1.4 Intel of Taxing volume 1.4 Intel of Taxing volume 1.2 Intel of Taxin

CMS phase 1 pixel detector: lessons learned

Phase 1

<u>CMS-TDR-011</u>

	phase 1 < 2024		
Number of pixels	124 · 10 ⁶	Same cabling as phase 0: → use DCDC converters to keep same services:	
Active silicon area	1.95 m ²		
Number of ROCs	1856 · 16 ROCs	power losses vary ∝ I²R power use constant ∝ UI	
Sensor type	n⁺-n planar 285 µm		
Readout chips	PSI46dig/PROC600 250 nm	PSI46 known from phase 0: from analog to digital readout with column drain PROC600 new to deal with high rates with dynamic	

cluster column drain

CMS pixel 2017-2018: summary and lessons learned

- Despite many challenges like DCDC failures, layer 1 timing and inefficiencies, pixel detector performed very well in 2017 and 2018
- Good to have **test setups** for example for temperature studies and software testing
- High and low voltage grouping ideally the same
- Monitoring radiation effects like leakage currents, temperatures, depletion voltages and chip properties very important
- Programming backend with trigger logic and backend for data readout ideally not separated

Phase-1 Pixel - Full depletion voltage vs days

Biweekly bias scan on subset

Stuck TBMs and malfunctioning DCDCs

functioning in disabled state

of one transistor

63/1216 at end of 2017 stopped functioning, another 333 had high current

> 2018: powercycling with PSU. No DCDC broke.

2020+: new DCDCs, new L1 TBMs.

See also talk by Katja Klein

1: token bit manager (TBM)

30 single event upsets (SEUs)/fb⁻¹ in L1 transistor in TBM latch sets TBM to 'no readout' mode: "stuck TBMs" recovery only with power cycle. Lowest granularity: one DCDC converter.

-1 modul

3: readout chips high and low voltage (HV, LV) grouping not the same

HV on, LV off caused

chip damage from sensor leakage current: 8/96 L1 modules lost in 2017

Layer 2 damaged chips

Layer 1 chip PROC600: timing, crosstalk, inefficiency

- Layer 1 readout chip speed very different from layer 2 → not enough delay
 setting granularity
- High thresholds resulting from crosstalk and large timewalk
- Inefficiency at high and low rates
- Reduced dynamic range as a result
 of large spread in pedestals

Temperature studies with a mockup of layer 2

Found a **large spread** in high voltage **leakage current** in detector

Mockup temperatures and CO₂ flow change effects **agree well with what is seen in actual detector** layer 2

Simulation for z = 0 cm, scaled to silicon temperature

detector

CMS phase 2 pixel sensors

Requirements for CMS pixel phase 2

Must-haves:

- More radiation hard → thinner sensors
- **Deal with high rates →** smaller pixels

Wishlist for good physics:

- The best **resolution** → cluster size 2
- Good charge above threshold → good signal/noise
- Low enough leakage current -> no thermal runaway
- **Efficiency** should be \ge 99%

See also talk by Fabian Hügging

Phase 2

CMS pixel layout CMS-TDR-014

FBK planar 50x50, bias dot, 100 μ m, $\Phi_{eq} =$ 5.10¹⁵/cm² (Ka), on RICE irradiation card

TBPX

TFPX

Disks, layers, reach		4 layers, 12 disks to <mark>η=4</mark>
Number of pixels		1949 · 10 ⁶
Pixel size	two options	100x25 μm², 50x50 μm²
Readout chips	<u>See also talk by</u> <u>Tomasz Hemperek</u>	RD53B=CROC 65 nm CMS version of RD53A (by end 2019)
Sensors	two type options thickness range:	n-p planar or 3D for L1 100-150 μm
TEPX	 Focus in this ta How thick sho What dimensi 	alk buld the sensor be? ons should the pixels have?

• Do we use 3D or planar sensors?

phase 2 >= 2024

18

Fror

Pixel cell dimensions

- Phase 2 pixel cell size must be % of phase 1 pixel size 150×100 μm^2
- $25 \times 100 \ \mu m^2$ or $50 \times 50 \ \mu m^2$ are both good

Pixel cell dimensions and resolution

- $25 \times 100 \ \mu m^2$ or $50 \times 50 \ \mu m^2$: charge sharing different
- Best resolution: cluster size of 2

2 pixel charge sharing for 18°

Optimal charge sharing at an angle atan(pitch/depth):

- **50×50 μm²:** atan(50/150) = 18.4°
- **25×100 μm²:** atan(25/150) = 9.5°
 - → increase E-field with higher bias

Compare with Lorentz angle:

 $\simeq 21^{\circ}$ in 3.8T in unirradiated sensors

Bias voltage requirements

400V needed for optimal resolution

Breakdown only at 600V before irradiation 20

Signal/noise and sensor thickness

- <u>Hamburg Pentatrap Model (HPTM)</u> used for simulation
- Not much gain in going thinner up to $\Phi_{eq} = 8.10^{15}/cm^2$
- Signal/threshold > 3 at $\Phi_{eq} = 8.10^{15}/cm^2$
- Thicker sensors have more leakage current: will there be thermal runaway?

Sensor thickness and thermal runaway

Г_{max senso}

- Model of layer 2 material to
- 150 µm has higher temperatures but cooling down to -33 °C suffices
- -22 °C is very close to thermal runaway
- sensor should be -20 °C
- Assumed is a total layer 2 fluence at 3000 fb⁻¹ of $\Phi_{eq} = 5.10^{15}$ /cm²

Required efficiency

To require a tracking efficiency > 99.99%:
→ 3 of 5 hits with 97% efficiency (ATLAS)
→ 3 of 4 hits with 99% efficiency (CMS)

- For fluences up to Φ_{eq} = 5.10¹⁵/cm²
 99% efficiency achieved at ≃400V
 → good for L2-L4 and half-lifetime L1
- For fluences up to Φ_{eq} = 1.10¹⁶/cm²
 99% efficiency achieved at ~600V

With or without bias dot?

- Bias dot necessary for sensor test before bump bonding
- Reduced efficiency with bias dot at 0°

Conclusions for 150 µm planar sensors

- Efficiency > 99% for fluences up to $\Phi_{eq} = 5.10^{15}$ /cm² with a bias voltage < 500V
- Signal/noise > 3 for a threshold of 1200e⁻ and a bias voltage below breakdown
- No thermal runaway with foreseen CO₂ cooling temperature of -33 °C
- Up to layer 1 half fluence efficiency of 99% reached with a bias voltage of 800V

This sensor is a possible layer 1 half-lifetime alternative to 3D sensor design

3D sensors

3D sensors

- Substrate thickness Δ and electrode distance L decoupled: promising for radiation hardness
- Lower chance of trapping
- Reduced depletion voltage: O(10) V
- Fast charge collection
- Option for innermost layer of CMS

3D sensor results

From Jordi Duarte Campderros and Andrea García Alonso

CMS phase 2 pixel modules

Module structure

- 2x2 chip modules at larger radius, 1x2 chips on one sensor closer to the beam pipe
- Modules on ladders with CO² cooling below -
- 4 and 5 modules resp. on each barrel half so that η=0 is covered

Flex: high density interconnect

- Transfers data
- Provides clock, trigger, control signals
- Provides power for ROCs
- L2 module power consumption 5.43W
- Prototypes tested up to 1000V

phase 1: n⁺-n, HV is on backside with guard rings, usually isolated and not on sensor edges
phase 2: n⁺-p, HV on all-metal backside, also on sensor edges. HDI copper layers thin, pitch small!

Protection against glue coverage of HDI pads and increased spark protection

Increased wire bond pad size from 500 μm to 750 μm Added overhang of 100 μm in wire bond sides $_{31}$

Summary

CMS phase 1:

- Successful commissioning of CMS phase 1 pixel detector since start of 2017
- Pixel detector running according to predictions
- Layer 1 will be exchanged this long shutdown
- The entire detector will be replaced in the next long shutdown 3

CMS phase 2:

- R&D for pixel sensors and modules is well advanced
- Sensor designs fulfilling requirements are characterized:
 - 150um thick planar up to layer 2
 - 150 um thick 3D or alternatively planar for layer 1 up to half the nominal fluence
- Module design advancing

Additional material

From TheNoise

Effects from radiation damage

Effects from radiation damage can be challenging in operation of detectors as well as for physics:

- Increasing leakage currents
- Charge accumulation in silicon oxide layers
- Single event upsets, in readout only
- Decreasing signal-to-noise ratios
- Changing depletion voltages
- Radiation induced activation of components
 From Michael Moll

38

2020+: new DCDCs, new L1 TBMs.

See also talk by Katja Klein

Stuck TBMs and malfunctioning DCDCs

1: token bit manager (TBM)

■ 30/fb⁻¹ in L1 transistor in TBM latch sets TBM to 'no readout' mode: "stuck TBMs" recovery only with power cycle. Lowest granularity: one DCDC converter.

63/1216 at end of 2017 stopped functioning **I** 333/1216 in 2017 found to have high current

2018: powercycling with **PSU. No DCDC broke.**

3: readout chips high and low voltage (HV, LV) granularity not ² HV on, LV off caused chip damage from leakage

current: 8/96 L1 modules lost in 2017

Leakage current causes capacitor to charge up in disabled state

4 module

DCDC malfunctioning

Enclosed layout (ELT) vs linear transistors → can 'cut' leakage current path by adding ELT in series

Planar sensor types

- **HPK** 6" n⁺-p with 150 μ m active thickness
 - \circ resistivity 1 to 5 kQ $\cdot cm$
 - **p-stop** and p-spray isolation
 - common punchthrough and no bias
- INFN **FBK** 6" n⁺-p with 100 and 130 μ m active thickness
 - resistivity > 3 k Ω ·cm
 - p-spray isolation
 - temporary metal for sensor testing
 - active edge/slim edge designs

Thermal runaway model: thermal conductivities

Thermal runaway model: interfaces

Sensor leakage current

- Thicker sensors have more leakage current
- 2nA/pixel reached
- Phase 1: 11nA/pixel, projection: 22nA/pixel
- <u>RD53A requires</u> ≤ 9 nA/pixel

