Doris Eckstein 12th Terascale Detector Workshop Dresden 14.3.2019

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

tHousebodyle Schedule

LHC / HL-LHC Plan

LHC

During LS3: upgrade of accelerator to peak luminosities of 5×10^{34} cm⁻²s⁻¹ (ultimately up to 7.5×10^{34} cm⁻²s⁻¹)

- \rightarrow collect up to 300 fb⁻¹ per year (450 fb⁻¹ ultimately)
- \rightarrow irradiation levels 1.1 x 10¹⁵ n_{eq} x cm⁻²
- —> requires new trigger concepts
- —> requires higher granularity
- CMS Tracker will be upgraded

HL_LHC

CMS Tracker Concept

CMS Tracker Concept

CMS Module Concept

- exploit strong magnetic field of 3.8 T of CMS solenoid
- p_T discrimination on board:
 - two closely spaced sensors
 - correlate signals —> local p_T measurement
 - reject low p_T Tracks —> minimise data volume
- 'stub' is formed of signals found within search window

- Level-1 and readout data provided
 - 'stubs' are sent at each bunch-crossing (40 MHz)
 - Full data are read out on trigger decision (<750 kHz)

CMS Tracker Concept – Modules

- - geometrical position in Tracker

CMS Tracker Concept – Modules

	barrel	one end cap	tracker	
1.8 mm 2S Module	4464	1396	7256	
4.0 mm 2S Module		212	424	
1.6 mm PS Module	826		826	
2.6 mm PS Module	1462		1462	
4.0 mm PS Module	584	1372	3328	
total	7336	2980	13296	

2S Module

- CBC processes data from 2x127 strips and builds stubs
- 8 CBC's per FEH
- exchange data with neighbours
- CIC receives data, performs zero suppression

- 2 x 1016 strips of ~5cm x 90 µm per sensor
- Front-end power ~5 W
- Sensor power ~1 W at -20°C
- Flexible hybrid brings signal of top and bottom, sensor to CBC chip
- Sensors are supported and kept at distance by AI-CF bridges
 - AI-CF is carbon-fibre reinforced Aluminium
 - Coefficient of thermal expansion matches Silicon
 - no or minimal thermal stress when module is operated at low temperature
- HV Isolation necessary

PS Module

- 2 x 960 strips of ~2.4 cm x 100 µm for PSs sensor
- 32 x 960 macro-pixels of ~1.5mm x 100 µm for PSp sensor
- Front-end power ~8 W
- Sensor power ~1.4 W at -20°C
- AIN spacers might replace AI-CF
 - —> no Kapton strip gluing would be necessary
- MPAs and sensors are cooled through base plate
 - —> requires a large-area glue joint between pixel sensor and base plate

Requirements on p_T Module

Relative sensor position

- $\bullet\ p_T$ modules use programmable search window to correlate hits
- discrimination requires precise sensor alignment within module
 - parallel shifts can be corrected for in 'stub' finding logic
 - rotations result in position-dependency along strip direction
 - --> max misalignment for PS sensor 800 µrad

Assembly of 2S modules jig-based For PS we are working on establishing a partially automated assembly

2S Module Assembly Sequence

14.3.2019 12th Terascale Detector Workshop, Dresden tein Doris Ecks

2S Module Assembly Steps

1. Reception tests:

- visual inspection of all parts
- IV curves of sensors
- hybrid tests
- check sensor edges

2. Glueing of HV pig tail

T. Ziemons, Aachen

3. Wire bonding of HV connection, encapsulation

4. Glueing of Kapton strips for **HV** insulation

5. Module glueing:

glue sensors to spacers alignment through sensor edges pushed to stoppers

6. Hybrid glueing

7. Wire bonding

8. Wire bond encapsulation

protect from damage cover with Sylgard 186

Metrology

Double sided metrology system

- Measure sensor misalignments (translation and rotation)
- Automated optical inspection
- Measurement of module thickness
- Camera from top and from bottom
- Calibrate shift of the camera axes by rotation of module

—> all produced modules within specs

Metrology

- Measure dicing angle (position of sensor ende to mask) for both sensors
 - used for qualification sensors before they are used for production
- Measure edges alignment with laser system
 - top and bottom sensor distance measured at 300 Hz while sensor edges move along laser (10mm/s)
 - fit of distances vs. position of sensor gives edge orientation rel. to laser

14.3.2019 12th Terascale Detector Workshop, Dresden,

Doris Eckstein

PS Module Assembly

DESY

Automated PS Module Assembly

Automated PS Module Assembly

- acquisition
- (R&D ongoing)

• Dedicated software developed to control motion, vacuum, image

• need to use small amounts of fast-curing glue (epoxy) to allow for handling

02-02-06-	264-g9c073f	e-dirty						Pa	attern Recognition inte	rface
OFF Sr	napshot 🗌 A	uto-Focusi	ng							
holding	Pattern Rec	ognition	Alignment	Assembly	Toolbox	Parameters	Motion Se	ttings	HW Controllers (Motion/Vacuum)	-
92						Pattern Recognition				
	7.6					Standal	one PatRec		FOUND MARKER	
		0.52 ★ 8 0.5 <u>+</u>	`****					Config	uration	
		0.48	`***,			Template Im	age			
		0.46	·*·***	1		Load Im	age /s	share/as	sembly/SensorPiece_1_clipC.png	
		0.42		* 	*'	Master Imag	e Threshold	ling		
+	-	0.38		×		Threshold	(pos int)		100	
		-1	0 1 2	I 8 4 5	5 7 angle (degree	○ Adaptive 1	Threshold (po	os odd i	nt) 587	
						Template-Ma	tching Ang	ular Sca	n	
		4			•	Pre-Scan Ang	les (list) [deg	g]	3	
- ,						Fine-Scan Ma	ximum Angle	e [deg]	4	
						Fine-Scan Ang	gular Step [d	leg]	0.2	
								Dec	ulta	
		+						Res		
	· =					Delta-X to Best-I	Match Pos. [I	mm]	0.6072	
		+				Delta-Y to Best-I	Match Pos. [r	mm] [0.5856	
+		1				Best-Match Tem	plate Orient	. [deg] (5	
		0	4 4	+	LL					
	•	CI								

Automated PS Module Assembly

- Mechanical prototypes assembled with glass sensor dummies with laser engraved markers
- All within specs
- Next steps: evaluate glues
- Other assembly steps will be jig-based

- Polytec EP 601 LV
 - standard glue used for OT module assembly
 - slow curing: approx 24h
 - fully uniform thin glue layer
- Loxeal or Loctite fast Epoxies
 - fast curing: approx. 10 min
 - very small amounts needed
- fast glue necessary to be able to lift assembled parts
- similar dispensing for baseplates and spacers
- qualification ongoing

From Modules to TEDD

- Only one type of integration tooling per center.
- High number of shipments of integrated Dees
 - DESY uses Lyon shipping box

- Minimized number of shipment of integrated Dees.
 - Less testing
- DESY and Louvain integrate both types.
 - More flexibility

Current Planning - under development

Title	2016	2017	2018
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q
R&D and Prototyping	01.10.16 🦯		
MaPSA	01.10.16		
Modules	01.10.16		
Mechanical Prototypes	01.10.16		
Early Prototypes			
Final Prototypes			
Burn-In Test			01.03.19
Dee	01.10.16		
TEDD	01.10.16		
MaPSA			
MaPSA Pre-Production Testing			
MaPSA Production Testing			
Module			
Module Pre-Production			
Module Production			
Burn-In Test			
Pre-Production Module Burn-In Test			
Production Module Burn-In Test			
Dee			05
Dee Pre-Production			
Dee Production			
Dee Integration and Testing			
TEDD			
Disk & Double-Disk Integration & Testing			
TEDD Integration			
Packing and Shipping			
OT Integration & Commissioning			
TEDD Insertion @ CERN			
Outer Tracker Commissioning @ CERN			

Summary and Outlook

- onto TEDD

Thanks to colleagues from Aachen, KIT and DESY

especially T. Ziemons, S. Maier, M. Missiroli, A. Mussgiller, M. Haranko who provided me with information and plots

• One CMS tracker endcap will be produced in Germany Aachen, KIT and DESY contributing

 Aachen and KIT will assemble 2S modules • DESY will assemble PS modules • Systems under development to test full modules, cooled • All modules will undergo burn-in at DESY and will be integrated

• R&D and prototyping towards production are well under way

BACKUP

14.3.2019 12th Terascale Detector Workshop, Dresden ,

Doris Eckstein

Cooling

- Modules are cooled via evaporative CO₂ to keep sensors at <-20°C
 - cooling contacts to pipes embedded in e.g. Dee through

 - --> aluminium inserts in Dee with cooling pipe embedded to 2S spacer
 - --> good thermal contacts necessary

Introduction - Limitations of the Current Tracker III

Phase 1 Tracker

Phase 2 Tracker

Test of produced Modules - mini Modules in Test Beams

Single-Chip MaPSA

14.3.2019 12th Terascale Detector Workshop, Dresden , stein

TEDD Support Structure - Dee

- Backbone is a carbon fibre sandwich half-disk structure (Dee)
 - ~225 cm in diameter
 - 10 mm thickness
- Modules are mounted from both sides onto structure
 - O(300 µm) positioning precision
- 20 Dees are combined to build one TEDD
 - 150 cm total length

End Cap Integration - Arc-Frame

- Dee is part of the TEDD mechanical structure
 - TEDD has no ,super-structure' into which Dees are inserted
- A single Dee is a rather floppy object
- Dees will stay in dedicated handling frame through-out integration process
 - reception tests manual module integration assembly
- Only when all 20 Dees are combined they become a stiff object
 - 4 Dees → 2 Disks → Double-Disk
 - 5 Double-Disks → TEDD
- Arc-frame design has to be compatible with all integration steps

DESY.

End Cap Integration - Disk & Double-Disk Assembly

- Upper Dee is mounted in a static holding frame, lower Dee is supported by manual motion stages
- Relative alignment via metrology and motion stages
- Upper and lower Dees are pinned together and both Arc-Frames are mechanically connected when alignment is achieved
- Assembled Disk is then moved to ,parking' position

End Cap Integration - Disk & Double-Disk Assembly

- Second Disk is assembled and remains in static holding frame • First Disk is moved back from ,parking' position and supported by manual motion stages
- Relative alignment via metrology and motion stages
- Both Disk are bolted together and Arc-Frames are mechanically connected when alignment is achieved

A. Mussgille DESY.

End Cap Integration

- Relative alignment of all five Double-Disks via metrology and manual motion stages
- Insertion of inner tube, longitudinal support bars and support rings when alignment is achieved

