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The LHC big data problem

ex, Compact Muon Solenoid

41

Z
N\
a4

\ 2~
\
%}/% il
Silicon f S

Tracker

Electromagnetic

1.
i

Calorimeter
Hadron
Calorimeter ~ Superconducting
Solenoid Iron return yoke interspersed
with Muon chambers

Om Tm 2m 3m 4m 5m 6m

L ] ] ] ] ] ] ]

Key:

Muon Electron ——— Charged Hadron (e.g. Pion)
— — —-Neutral Hadron (e.g. Neutron) Photon

At the LHC the proton beams collide at a frequency of 40 MHz
Each collision produces O(103) particles!
The detectors have O(108) sensors used to detect these particles

Exireme data rates of O(100 TB/s)!
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Event processing @ LHC

Reduce data rates to manageable levels for offline processing
by filtering events through multiple stages:

1 ns 1 ys 100 ms 1s

1 KHz

1 MB/event
—

Offline

. -
A4

Absorbs 100s TB/s

Trigger decision to be made in O(ps) Analysis of the full event runs on
commercial computers (30k CPU cores)

Latency O(100 ms)

99% events rejected!

Latencies require all-FPGA design
99.75% events rejected!
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The HL-LHC challenge

Run 1 | | Run 2 | | Run 3
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The High-Luminosity LHC will pose major challenges:

instantaneous luminosity x 5—7
particles per collision x 5
more data x 15
more granular detectors with x 10 readout channels

— event rates & datasets will increase to unprecedented levels!
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Detector upgrades for HL-LHC

ex: CMS High-granularity calorimeter

Novel technology for CMS endcap calorimeter:
52 layers with unprecedented

number of readout channels! . Total Silicon:
= 600 m?
Total scintillator
: = 500 m?
T 6 M Channels
& _J CMS HGCAL TDR
Al
j:
Diameter (m) 15 25
Length (m) 28.7 46
B-Field (T) 3.8 2/4
EM Cal channels | | ~80,000 | ~110,000 |4.3M
Had Cal channels | ~7,000 |~10,000 |1.8M

P.Merkel
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http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf
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Modern deep learning algorithms might be the way out!

"9 CMS Experiment at the LHC, CERN
Data recorded: 2016-Aug-15 01:00:30.361728 GMT

Run / Event / LS: 278822 / 837399836 / 484 .

N i, electron

/
/ electron

Event reconstruction in CMS

A neural network

Recast particle physics problem
into a machine learning problem!



What is machine learning?

6 — S -

Input Feature extraction + Classification Output

Learning mathematical model from input data that characterize patterns, regularities,
and relationships among variables.

Three key components:
* model - chosen mathematical model (depends on the task and type of data)

*learning - estimate model from data
 prediction - use learnt model to make predictions on new data points (also called

“inference”)

While training a ML algo can take a long time, the inference is usually very fast!
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And deep learning?

Machine Learning

G — &y — 353

Input Feature extraction Classification Output

Deep Learning

Gip — SEFEGE —

Input Feature extraction + Classification Output
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The success of ML in HEP

ML methods widely used in HEP
showing excellent physics performance in offline analysis

ex, Higgs boson discovery
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ML algorithms used offline for
* improving Higgs mass resolution with particle energy regression

* enhancing signal/background discrimination
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HEP learning from industry

Take advantage of industry trends in developing new devices optimized
for ML and speed up the inference

INTEL AND MICROSOFT ENABLE Al INFERENCE AT THE EDGE
WITH INTEL MOVIDIUS VISION PROCESSING UNITS ON
WINDOWS ML

Today during Windows Developer Day, Microsoft announced Windows* ML, which enables
developers to perform machine learning tasks in the Windows OS. Windows ML efficiently
uses hardware for any given artificial intelligence (Al) workload and intelligently distributes
work across multiple hardware types — now including Intel Vision Processing Units (VPU). The
Intel VPU, a purpose-built chip for accelerating Al workloads at the edge, will allow

developers to build and deploy the next generation of deep neural network applications on
Windows clients.

brkshop - Deep Learning and High-Lumi LHC



Example: particle tracking
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|

charged pCII'ﬁCle E CMS Simulation, {s = 13 TeV, tt + PU, BX=25ns
< fraiecfory ;E% 60?—-— Full Reco *— Track Reco ]
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silicon strip sensors i :
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Luminosity [10** cm2 s°7]

Thousands of particles leaving charge deposition (hits) on O(10) layers of sensors
Curved trajectory due to magnetic field

Reconstructing the particle trajectory is the most computing expensive part of physics
event reconstruction = scale quadratically or worse with detector occupancy

Optimizations (to fit in computational budgets) mostly saturated!
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Traditional tracking algorithm

Hit preparation

1. Clustering of single energy
deposits into a particle “hit”
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Traditional tracking algorithm

Hit preparation

Track seeding

2. Seeding: compatible sets of
three hits in the inner pixel layers
used as track seed
* fixes the combinatorics
— fixes CPU usage
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Traditional tracking algorithm

Hit preparation

Tl

Track seeding

Track building

3. Build the track from the chosen
seeds using Kalman Filter to predict
hit position in the next layer

15.03.2019
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Traditional tracking algorithm

Hit preparation

4. Final full resolution fit of the
candidate trajectories to extract

particle properties

15.03.2019
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Speed up tracking with computer vision

Operation Filter Convolved
Image
e Computer vision methods automatically oo
extract, analyse and understand useful — [g ! g}
information from very low level inputs such
as pixels in an image [ - }:]
-1 0 1
* Make use of Convolutional Neural Networks e dorocon [‘1’ b ‘1"
0 1 0
identify low level features (edges,curves,..) L
through filters and then build them up to [—1 . —1]
-1 =1 -1
abstract concepts
0 1 0
Sharpen |:—1 ) —1]
- m o 0 -1 0
: E P Box blur 1 - C L
A g : (normalized) 6 2L
o o 22> 111
)|\
convlqlutio_n+ max pooling vec g \E Gauesian biur L |:; i ;]
nonlinearity | ‘ | © | [ | "i (approximation) 16 1 2 1
convolution + pooling layers fully connected layers ~ Nx binary classification
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Speed up tracking with computer vision

* Track building demands a lot of computational resources, so one should choose

carefully which seeds to use = remove fake seeds due to combinatorial background

* Reduce this effect by taking into account the shape of the hit pixel cluster to check
the compatibility between two hits

. . ACAT ‘17
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color code = how much energy the particle leaves in each pixel
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https://indico.cern.ch/event/567550/papers/2638698/files/6044-ACAT2017_CNN_DiFlorio_78_rev1.pdf

Cluster Y (Columns)

Speed up tracking with computer vision
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Deep learning for tracking

* Other work on particle tracking with deep learning: hitps://heptrkx.github.io/

- computer vision approach

- recurrent neural networks
- graph neural networks

15.03.2019

operate on the spacepoint representation
of track measurements (“hits”)

X/

/

N
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Calorimetry with computer vision

With highly granular 3D arrays of hexagonal
pixels will improve ability to identify and

characterize particles.
. (‘Q‘O
& .

-- YHR0R00 B

hddron

|deal geometry and resolution to apply
computer vision with 3D convolutional NN
to speed up calorimetry and improve
performances.
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Calorimetry with computer vision

Feed raw 3D pixelated image of the calorimeter to Conv 3D NN architecture to achieve
state-of-the-art performance in terms of particle identification and energy measurement
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http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

How fast can we do a NN inference?

1 ns 1 us 100 ms 1s

- T ';amz:', e

_> iI;'l;lll‘“ ‘":ﬁﬁf

= '//WIIFEF\E\\‘\“ / k.

F///lnl N O

1 MB/event
Offline
reconstruction

Level 1 trigger High-Level Trigger @ Tier O
Absorbs 100s TB/s Computing farm for detailed
Trigger decision to be made in O(us) analysis of the full event
Latencies require all-FPGA design Latency O(100 ms)
15.03.2019
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How fast can we do a NN inference?

100 ms 1s
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T Bl o e b e Latency O(100 ms)

Deep neural network
based on high-level features We are already applying

for b-quark jets identification . |
(offline & HLT) Deep Learning here!
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Ultra low-latency DL for L1 trigger

Level 1 trigger

Absorbs 100s TB/s

Trigger decision to be made in O(ps)

Latencies require all-FPGA design

Can we do realtime Al in

O(ps) on one FPGA?

15.03.2019 12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC

25



Bring DL to FPGA for L1 trigger with

high level synthesis for machine learning

Vivado™ HLS

f/
his 4 ml

PYTHORCH

Keras
TensorFlow

PyTorch

Co-processing kernel

compressed

model HLS S
conversion

Custom firmware
design

Usual ML J 7\
software workflow

\’rune configuration /
7 reuF;trae/crIJ?;)ZTine

Tensor
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https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

* reduced calculation precision without loss in performance

Bring DL to FPGA for L1 trigger

Exploiting high FPGA hardware flexibility we can fit DL solutions @ L1:
* highly-parallel algorithm implementation
* large bandwidth

his4dml 3-layer pruned, Kintex Ultrascale
50 4 —#— Reuse Factor=1
Reuse Factor = 2
—#— Reuse Factor = 3
—8— Reuse Factor =4
40 1 —=— Reuse Factor =5 ~ ] 75 ns
—#— Reuse Factor =6
3 30
C
g
©
-
20
10 A \
DL algo inference in ~75 ns!
0 T T T T T
<8,6> <16,6> <24,6> <32,6> <40,6>
Fixed-point precision
15.03.2019

arxiv.1804.06913

1e3 his4ml 3-layer pruned, Kintex Ultrascale
—u— Reuse Factor =1
Reuse Factor = 2 Max DSP
e ——_ Reuse FAaclor = 3 m m= o= o= o o o o o o o o o o e e ——
—u— Reuse Factor =4
—#— Reuse Factor =5
—#— Reuse Factor =6
<8,6> <16,6> <24,6> <32,6> <40,6>

Fixed-point precision
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https://arxiv.org/abs/1804.06913

Heterogeneous computing

Offload a CPU from the computational ,
h ts to a FPGA “accelerator” Intel® Programmable Acceleration
eavy par Card with Intel Arria® 10 GX FPGA

Increased computational speed of 10x-100x Intet Programmable MACIDPROM  FLASH Uss
M ntel® rrrilaebn GX F |

Reduced system size of 10x e A0 GREREA

Reduced power consumption of 10x-100x

QSFP+ 4x 10Gb
Networking Interface
Increasing popularity of co-processor -

SYS'I'e ms {BX PCle*

\ /

lntgl"

A GX
4x
pgic Elements DDR4 w/ECC

A

CPU+FPGA / CPU+GPU / CPU+TPU / ... ,,

Common setup for FPGA connects to CPU through PCl-express

Use case @ LHC to accelerate slow algorithms (ex:
tracking) and ML inference for HLT and offline analysis

Ongoing R&D on heterogeneous computing on-site (@CERN) and on
commercial clouds (Microsoft Brainwave, Amazon Web Services, Google TPU

cloud)

15.03.2019 12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC
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Co-processors as a service with Brainwave
B (inte!

Hardware as a Service

Network Acceleration

Compute Acceleration
e

* On-site co-processors interesting (
solution for HLT computing farm
where latency is the bottleneck

* For offline, better solution is using co-
processors as a service on the cloud

- not feasible to buy specialized
hardware for each T1, T2, T3 computing

center \

* Project Brainwave provides a
full scalable real-time Al service
on Azure cloud (more than just a ST

single co-processor)
- Multi-FPGA+CPU fabric accelerating LRSI o CPU b FPGAJ S switch

both computing and network Gens x8

WCS 2.0 Server Blade (Mt. Hood) Catapult V2 (Pikes Peak)

DRAM DRAM

- Caveat: currently supports only selected
computing vision off-the-shelf networks
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number of events

Co-processors as a service with Brainwave

See talk at ACAT19
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time [ms]

remote test:

FROM CPU @ Fermilab, lllinois

TO Azure @ Virginia
— <time> = 60 ms

(limited by distance and speed-of-light)

15.03.2019

Datacenter (CPU farm)

....................................................
.....................................................

Heterogeneous

:i| Experimental Cloud Resource

| Software

/
Network input

P Prediction

* .
+ Heterogeneous .
* “Edge” Resource
u

L
.
e

on-prem test:
run CMS software on Azure VM
— <time> = 10 ms

(~ 2ms on FPGA, rest is classifier and 1/0O)
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https://indico.cern.ch/event/708041/contributions/3276153/

The HL-LHC is expected to start operations in 2026.
With data rates and pileup levels much higher than previously achieved
it will pose major challenges at all levels of data collection and processing.

Deep Learning and new computing technologies offer
the possibility to help facing these challenges.

Join this effort to keep making new discoveries at CERN possible!




