
12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �1

Deep learning and future challenges  
at the High-Luminosity LHC

Jennifer Ngadiuba (CERN)

12th Terascale Detector Workshop
12-15 March, 2019, TU Dresden, Physics Department

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �2

The LHC big data problem

At the LHC the proton beams collide at a frequency of 40 MHz
 Each collision produces O(103) particles!

The detectors have O(108) sensors used to detect these particles
Extreme data rates of O(100 TB/s)!

ex, Compact Muon Solenoid

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �3

Event processing @ LHC
Reduce data rates to manageable levels for offline processing 

by filtering events through multiple stages:

Absorbs 100s TB/s
Trigger decision to be made in O(μs)
Latencies require all-FPGA design
99.75% events rejected!

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline
L1 Tri

gger High-Level
Trigger

100 ms 1 s1 ns 1 μs

40 MHz 100 KHz 1 KHz 
1 MB/event

Analysis of the full event runs on
commercial computers (30k CPU cores)
Latency O(100 ms)
99% events rejected!

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �4

The High-Luminosity LHC will pose major challenges:

instantaneous luminosity x 5—7
particles per collision x 5

more data x 15
more granular detectors with x 10 readout channels

→ event rates & datasets will increase to unprecedented levels!

2026

LHC TODAY HL-LHC

The HL-LHC challenge

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Detector upgrades for HL-LHC

�5

ex: CMS High-granularity calorimeter

Novel technology for CMS endcap calorimeter:  
52 layers with unprecedented  
number of readout channels!

CMS HGCAL TDR Jan 19, 2018CMS HGCal upgrade Huaqiao Zhang @ HKUST

The HGCal Geometries

11

• HGCal

§ Ecal + Hcal

• Ecal (CE-E)

§ 28 layers Si + W/Pb/Cu

§ 25 X0 & ~1.3l

• Hcal (CE-H)

§ 24 layers Si/Scintillator

+ Stainless Steel

§ ~8.5l

• Total Silicon:

§ 600 m2

• Total scintillator

§ 500 m2

• 6 M Channels

A SENSE OF SCALE

Challenges:
• Embedded readout electronics at 1mW/channel = 1.5 MW of power
• Timing on a system scale of millions of channels at the level of 50 ps
• In order to maintain good momentum resolution, enormous magnet needed (6T, 12m

bore: ~60 GJ stored energy)
• Pile-up reaching 1000 events per bunch crossing
• Simply scaling CMS High Granularity Calorimeter would require >5,000 m2 of silicon!

12/9/18 P. Merkel - Generic Detector R&D 20

P.Merkel

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �6

2026

LHC TODAY HL-LHC

x 20

Event  
complexity

x 5

Processing 
time

x 50

Computing 
resources/ 

Disk storage

x 20

The HL-LHC challenge

Assuming flat budget for  
computing resources,

 current data processing
paradigms will not be sustainable!

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �7

HL-LHC —> x5

Modern deep learning algorithms might be the way out!

electron

electron

muon
b-jet

jet

Recast particle physics problem  
into a machine learning problem!

Event reconstruction in CMS
A neural network

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

What is machine learning?

�8

Learning mathematical model from input data that characterize patterns, regularities,
and relationships among variables.

Three key components:
•model - chosen mathematical model (depends on the task and type of data)
•learning - estimate model from data
•prediction - use learnt model to make predictions on new data points (also called

“inference”)

While training a ML algo can take a long time, the inference is usually very fast!

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

And deep learning?

�9

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

The success of ML in HEP

�10

ML methods widely used in HEP  
showing excellent physics performance in offline analysis

m(jj) [GeV]
60 80 100 120 140 160

S/
(S

+B
) w

ei
gh

te
d

en
tri

es
0

500

1000

Data

bb→VH,H

bb→VZ,Z

S+B uncertainty

CMS
 (13 TeV)-177.2 fb

ML algorithms used offline for
✴ improving Higgs mass resolution with particle energy regression
✴ enhancing signal/background discrimination

ex, Higgs boson discovery

H→γγ

H→bb

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

HEP learning from industry

�11

Take advantage of industry trends in developing new devices optimized
for ML and speed up the inference

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Example: particle tracking

�12

charged particle  
trajectory

silicon pixel sensors

silicon strip sensors

x = interaction point

Thousands of particles leaving charge deposition (hits) on O(10) layers of sensors
Curved trajectory due to magnetic field

Reconstructing the particle trajectory is the most computing expensive part of physics
event reconstruction → scale quadratically or worse with detector occupancy

Optimizations (to fit in computational budgets) mostly saturated!

x

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Traditional tracking algorithm

�13

1

1. Clustering of single energy
deposits into a particle “hit”

2

3

4

Hit preparation

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Traditional tracking algorithm

�14

1
2

3

4

2. Seeding: compatible sets of
three hits in the inner pixel layers
used as track seed

•fixes the combinatorics  
→ fixes CPU usage

Hit preparation

Track seeding

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Traditional tracking algorithm

�15

1
2

3

4

3. Build the track from the chosen
seeds using Kalman Filter to predict
hit position in the next layer

Hit preparation

Track seeding

Track building

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Traditional tracking algorithm

�16

1
2

3

4

4. Final full resolution fit of the
candidate trajectories to extract
particle properties

Hit preparation

Track seeding

Track building

Track fitting

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Speed up tracking with computer vision

�17

•Computer vision methods automatically
extract, analyse and understand useful
information from very low level inputs such
as pixels in an image

•Make use of Convolutional Neural Networks

identify low level features (edges,curves,..)
through filters and then build them up to
abstract concepts

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Speed up tracking with computer vision
•Track building demands a lot of computational resources, so one should choose

carefully which seeds to use → remove fake seeds due to combinatorial background

•Reduce this effect by taking into account the shape of the hit pixel cluster to check
the compatibility between two hits

�18

color code = how much energy the particle leaves in each pixel

ACAT ‘17

https://indico.cern.ch/event/567550/papers/2638698/files/6044-ACAT2017_CNN_DiFlorio_78_rev1.pdf

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Speed up tracking with computer vision

�19

Reduce fake rate by one order of
magnitude with  

only few % loss in efficiency!

ACAT ‘17

https://indico.cern.ch/event/567550/papers/2638698/files/6044-ACAT2017_CNN_DiFlorio_78_rev1.pdf

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Deep learning for tracking
•Other work on particle tracking with deep learning: https://heptrkx.github.io/

- computer vision approach

- recurrent neural networks

- graph neural networks

�20

operate on the spacepoint representation
of track measurements (“hits”)

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Calorimetry with computer vision

�21

With highly granular 3D arrays of hexagonal
pixels will improve ability to identify and
characterize particles.

Ideal geometry and resolution to apply
computer vision with 3D convolutional NN
to speed up calorimetry and improve
performances.

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �22

Calorimetry with computer vision
Feed raw 3D pixelated image of the calorimeter to Conv 3D NN architecture to achieve
state-of-the-art performance in terms of particle identification and energy measurement

CMS HGCAL TDR

http://home.fnal.gov/~chlebana/CMS/TDR-17-007-paper-v5.pdf

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

How fast can we do a NN inference?

�23

100 ms 1 s1 ns 1 μs

High-Level Trigger

1 KHz

Offline
reconstruction

@ Tier 0

40 MHz 100 KHz

Level 1 trigger

1 MB/event

Computing farm for detailed
analysis of the full event
Latency O(100 ms)

Absorbs 100s TB/s
Trigger decision to be made in O(μs)
Latencies require all-FPGA design

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

How fast can we do a NN inference?

�24

100 ms 1 s1 ns 1 μs

High-Level Trigger

1 KHz

Offline
reconstruction

@ Tier 0

40 MHz 100 KHz

Level 1 trigger

1 MB/event

Computing farm for detailed
analysis of the full event
Latency O(100 ms)

Absorbs 100s TB/s
Trigger decision to be made in O(μs)
Latencies require all-FPGA design

We are already applying
Deep Learning here!

Deep neural network
based on high-level features
for b-quark jets identification
(offline & HLT)

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Ultra low-latency DL for L1 trigger

�25

100 ms 1 s1 ns 1 μs

High-Level Trigger

1 KHz

Offline
reconstruction

@ Tier 0

40 MHz 100 KHz

Level 1 trigger

1 MB/event

Computing farm for detailed
analysis of the full event
Latency O(100 ms)

Absorbs 100s TB/s
Trigger decision to be made in O(μs)
Latencies require all-FPGA design

Can we do real-time AI in
O(μs) on one FPGA?

We are already applying
Deep Learning here!

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Bring DL to FPGA for L1 trigger with

�26

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#����-�

$

� ��������� ������
�����������

�� ��	��������

�����
���/���

�����
���!������

��������������������

� ���������"����
������

�����

� ���	���
����"����"������"

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –

https://hls-fpga-machine-learning.github.io/hls4ml/

high level synthesis for machine learning

arxiv.1804.06913

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Bring DL to FPGA for L1 trigger

�27

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Exploiting high FPGA hardware flexibility we can fit DL solutions @ L1:
•highly-parallel algorithm implementation
•large bandwidth
•reduced calculation precision without loss in performance

DL algo inference in ∼75 ns!

∼175 ns

arxiv.1804.06913

https://arxiv.org/abs/1804.06913

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Heterogeneous computing

�28

Intel® Programmable Acceleration
Card with Intel Arria® 10 GX FPGA

Offload a CPU from the computational
heavy parts to a FPGA “accelerator”

Increased computational speed of 10x-100x
Reduced system size of 10x
Reduced power consumption of 10x-100x

Increasing popularity of co-processor  
systems

CPU+FPGA / CPU+GPU / CPU+TPU / …
Common setup for FPGA connects to CPU through PCI-express

Use case @ LHC to accelerate slow algorithms (ex:
tracking) and ML inference for HLT and offline analysis

Ongoing R&D on heterogeneous computing on-site (@CERN) and on
commercial clouds (Microsoft Brainwave, Amazon Web Services, Google TPU
cloud)

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Co-processors as a service with Brainwave

�29

•On-site co-processors interesting
solution for HLT computing farm  
where latency is the bottleneck

•For offline, better solution is using co-
processors as a service on the cloud

- not feasible to buy specialized
hardware for each T1, T2, T3 computing
center

•Project Brainwave provides a
full scalable real-time AI service  
on Azure cloud (more than just a
single co-processor)

- Multi-FPGA+CPU fabric accelerating
both computing and network

- Caveat: currently supports only selected
computing vision off-the-shelf networks

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019

Co-processors as a service with Brainwave

�30

remote test: 
FROM CPU @ Fermilab, Illinois 
TO Azure @ Virginia
→ <time> = 60 ms
(limited by distance and speed-of-light)

on-prem test: 
run CMS software on Azure VM
→ <time> = 10 ms
(∼ 2ms on FPGA, rest is classifier and I/O)

Network input

Datacenter (CPU farm)

CPU FPGA

Prediction

Experimental

Software

gRPC protocol Heterogeneous
Cloud Resource

CPU
FPGA

Heterogeneous
“Edge” Resource

gRPC
 protocol

Experimental
software

See talk at ACAT19

https://indico.cern.ch/event/708041/contributions/3276153/

12th Terascale Detector Workshop - Deep Learning and High-Lumi LHC15.03.2019 �31

The HL-LHC is expected to start operations in 2026.
With data rates and pileup levels much higher than previously achieved  

it will pose major challenges at all levels of data collection and processing.

Deep Learning and new computing technologies offer  
the possibility to help facing these challenges.

Join this effort to keep making new discoveries at CERN possible!

Thank you!

