The DARWIN Liquid Xenon Detector

12th Terascale Detector Workshop 12-15 March 2019 Physics Department, TU Dresden

> Sebastian Lindemann University of Freiburg

erc

sebastian.lindemann@physik.uni-freiburg.de

DARWIN

DARk matter WImp search with liquid xenoN

Dark Matter Indications

Astronomy

40

PF95-14 · ST Scl OPO · April 5, 1995 · W. Couch (UNSW), NASA

S. Lindemann, Universität Freiburg

(Some) Dark Matter Candidates

MOND/TeVeS: fails (so far) to simultaneously describe all different scales MACHOs: likely ~ 20% of DM are massive astrophysical compact halo objects (but not all of it)

Prerequisites:

- cold (structure formation: no large free-streaming)
- electrically neutral (searches for CHAMPs)
- abundance of 27 % (CMB)
- cosmologically stable (gravitational effects today)
- no strong interaction (cluster collisions)
- + additional motivation

(smallness of neutrino masses; hierarchy problem; weak and strong unification; ultra high-energy cosmic rays; strong CP-problem)

+ signals within reach

Dark Matter (WIMP) Searches

Indirect detection Direct detection

Particle colliders

S. Lindemann, Universität Freiburg

Why liquid xenon (LXe) as detection medium?

- Large mass number A(131), higher rates for SI interactions (proportional to A²)
- **50% odd** isotopes (¹²⁹Xe, ¹³¹Xe) for **SD** interactions
- No long-lived radioisotopes (with exception of 136 Xe, $T_{1/2}$ = 2.2×10²¹ y), low intrinsic bg
- High stopping power (Z=54, ρ = 3 g/cm³), self shielding
- Efficient scintillator (80% light yield of NaI)
- Light output @ 178 nm (no WLS needed)
- Liquid at ~182K @ 2 bar, easy cryogenics

Status of the Field

Spin-independent WIMP-nucleon interactions

A decade of direct searches

- Larger target mass
- Lower backgrounds
- Heavy targets

2-phase xenon (LXe/GXe) TPCs from $m_{\chi} > \sim 5 \text{ GeV/c}^2$

v-floor: the ultimate limit from CNNS neutrino background (Billard et al. PRD 89 (2014) 023524)

LXe detectors: How to improve sensitivity

S. Lindemann, Universität Freiburg

DARWIN Collaboration

Detection principle of dual-phase TPC

DARWIN: Baseline TPC Design

- ~50 t total LXe (40 t target)
- Double walled cryostat
 - SS, Ti, ...
- 2 photosensor arrays (top/bottom)
 - e.g., 1800 3" R11410-21 PMTs from Hamamatsu
- Reflective PTFE walls
- Charge + light readout
 - 2-phase via prop. scintillation in GXe
 - 1-phase via prop. scintillation in LXe
- Sensitivity goal: $\sigma_{SI} \sim 10^{-49} \text{ cm}^2$

Background sources high-E vs $pp + {}^7Be vs$ Ì • radiogenic neutrons: (α,n) and spont. fission • intrinsic: ²²²Rn, ⁸⁵Kr, ¹³⁶Xe NR H H

WIMP Spectroscopy

Reconstruction of WIMP properties: Mass and scattering cross-section

- $m_{WIMP} = 20, 100, 500 \text{ GeV/}c^2$
- Spin-independent cross section: 2×10^{-47} cm²
- 1σ/2σ credible regions shown; marginalized over astrophysical parameter uncertainties (local DM density and distribution,)

WIMP Complementarity

Sensitivity of DARWIN to spin-dependent WIMP-nucleon cross sections

- Likelihood analysis for 200 t \times y and 500 t \times y
- DARWIN and the high-luminosity LHC will cover common parameter space.
- 14 TeV LHC limits for the coupling constants $g_{\chi} = g_{q} = 0.25, 0.5, 1.0, 1.45$ (bottom to top) Phys. Dark Univ. 9-10 (2015)

Detour: Neutrino sources

- Solar neutrinos (see next slide)
- Diffuse supernova neutrinos (history of all supernova explosions)
- Atmospheric neutrinos (through cosmic ray collisions in Earth's atmosphere)

Detour: Solar Neutrinos

Neutrino observatory

Neutrino observatory

S. Lindemann, Universität Freiburg

Elastic Neutrino Electron Scattering

ER: Elastic Neutrino Electron Scattering

- High statistics measurement of pp-flux:
 1% precision after 5 years (9500 v in 100 t × y)
- E.g., look for non-standard neutrino interactions (modified survival probability P_{ee} also at pp-energies)

Coherent Neutrino Nucleus Scattering (CNNS)

Process interesting by itself

- Cleanly predicted in the SM (predicted cross-section is the largest of all low-E v couplings)
- Measurement provides a SM test
- First observed by Coherent Coll. (Science 357 (2017), 6356)

... and can be exploited to detect a supernova in (or close to) our galaxy ...

Coherent Neutrino Nucleus Scattering (CNNS)

Axion and ALP searches

Axion:

- Peccei-Quinn (1977) solution to strong CP problem in QCD (pseudo-Nambu-Goldstone boson of broken global U(1) symmetry)
- Interacts with matter via axio-electric effect

Galactic axions and axion like particles (ALPs):

• well-motivated DM candidates

Solar axions:

• could be abundantly produced in sun

S. Lindemann, Universität Freiburg

Neutrinoless double beta decay $(0\nu\beta\beta)$ of ¹³⁶Xe

- Neutrino: Majorana or Dirac particle?
- Probe effective Majorana mass
- Determine mass hierarchy
- Test lepton number conservation

R&D for DARWIN

(Some) important requirements:

- Good light collection
 - \circ SiPM, SiGHT, Abalone, 4π coverage, ...
- Stable, strong and homogeneous E-fields
 - Electrodes development, Single Phase
- Xenon purity
 - \circ e⁻ drift and ER backgrounds
- Material purity
 - Screening (NR and ER), hermetic TPC
- Triggerless DAQ readout

R&D for **DARWIN**

Test Platforms: (x,y) and z

DARWIN Summary

Timeline construction ~2025

Primary scientific goal:

 Direct detection of WIMP Dark Matter; ultimately limited by v-floor

Further science channels:

• Search for alternative DM candidates

• e.g., ALPs

- Neutrino observatory
 o pp-flux, SN neutrinos
- Rare event searches

• Axion, $0\nu\beta\beta$ (¹³⁶Xe)

R&D for DARWIN

Electric field - Lessons learned

Drift field

- bare minimum: ~80 V/cm
 (e.g., XENON1T [PRL 121, 111302])
- requires: -20 kV @ cathode

Electrodes

- Solid metal frame with parallel/woven wires or etched meshes
- Minimal (wire) sagging under electrostatic forces
 - Small electrode frames to maximize sensitive volume

R&D for DARWIN

Electric field

Drift field

- bare minimum: ~80 V/cm (e.g., XENON1T [PRL 121, 111302])
- requires: -20 kV @ cathode

Electrodes

- Solid metal frame with parallel/woven wires or etched meshes
- Minimal (wire) sagging under electrostatic forces
- Small electrode frames to maximize sensitive volume

R&D for DARWIN Rn/Kr mitigation

Purified Xenon

5

Raw Xenon

Direct DM Detection – What to expect?

