

Physics at e⁺e⁻ Colliders

- Rich physics program @ 250 GeV 1 TeV
 - Higgs precision physics, top-quark physics, physics beyond the standard model
- Discovery of a Higgs boson in 2012
 - Higgs as new window into physics beyond the Standard Model
- So far absence of new physics at the LHC
 - precision is key to BSM physics; deviations of e.g. SM Higgs couplings are O(%)

The ILC is a Higgs factory at all energies!

At 250 GeV: Very clean and easy to reconstruct

HZ final state.

Precision access to many Higgs properties

FCC-ee

Why a Linear Collider

- Basic Limitations of all e+e- synchrotons
 - Synchrotron radiation loss ~ E⁴/r
 - Synchrotron cost ~ quadratically with Energy (B. Richter 1980)
 - E_{CMS}=~ 200 GeV as upper limit
- Linear Accelerators offer a clear way to higher energy
 - Not limited by synchrotron radiation
 - Cost ~ linear with Energy
 - Polarization of both beams
- "nano beamspot" allows detectors close to the IP → key ingredient for c-tagging

e⁺e⁻ Luminosity

- More Luminosity?
 - Machine
 - Stronger focus
 - Top-Up
 - Power
 - Just use more power
 - Cost
 - Make it bigger
 - Add more RF
- At the end there is no magic...
 - Balance between performance, cost and reliability

Marcel Stanitzki

Linear Colliders – It's not just luminosity

- B_s Oscillation Search
- ALEPH (LEP)
 - ~ 6 million Z's
- SLD
 - ~ 300000 Z's
- Main advantage of SLD:
 - Pixel Vertex detector
 - Much closer to the IP

It's not just luminosity

- Having the "better" detector compensates for luminosity
- B_s discovery
 - Deadtime-less Silicon Tracker and Secondary Vertex Trigger gave CDF the clear edge
- Being better in one does not mean to be better everywhere
 - Also some detectors where in better in something, which turned out to be not very interesting ...

Physics Requirements

Performance Requirements

- Time stamping
 - Single Bunch resolution
- Vertex detector
 - < 4 μm precision
- Tracker
 - $\sigma(1/p) \sim 2.5 \times 10-5$
- Calorimeter

•
$$\frac{\sigma_{E_{Jet}}}{E_{Jet}} = 3 - 4\%$$
, $E_{Jet} > 100 \ GeV$

primary vertices in tth events

W-Z separation

Design Considerations

- Vertexing
 - Highly-granular and very thin
- Tracking
 - High precision tracking with minimal material budget
- Calorimetry
 - Particle Flow Paradigm
- Cooling and Power
 - Avoid liquid cooling, reduce amount of cabling

- Machine Detector Interface
 - Take advantage of unique Beam structure
 - Push-Pull
- Radiation Damage
 - Not really an issue for most detectors
 - Small Exception for the very forward detectors

Marcel Stanitzki

PFA - Particle Flow

- PFA = Particle Flow Algorithm
 - Combining all available reconstruction information
 - Momentum (Tracker), Energy (Calorimetry), Particle type (PID)
 - Reconstruction of each particle's four-vector
- Key ideas
 - Charged particles: Tracking resolution >> Calorimetry resolution
- Typical Jet :
 - 60 % charged particles, 30 % photons, 10% neutrals
 - PFA is the key to desired Jet Energy Resolution

PFA - Design Driver at the ILC

- Particle Flow Algorithms
 - PFA has been used before at LEP, HERA and LHC
- Novel Approach at the ILC→ PFA drives design of the detector
- Impact on the detector design
 - Highly granular calorimetry
 - Low-mass tracking
 - Calorimetry inside the superconducting solenoid

ILC Timing

- Bunch Structure at the ILC is very different compared to a synchrotron
 - Bunch spacing of 554 ns
 - 1 Train has 1312 bunches in ~ 1 ms
 - Then 199 ms guiet time until the next train
- Huge Impact on the Detector design
 - Occupancy dominated by beam background & noise
 - Triggerless Readout
 - Buffering on front-end & Readout after the last bunch
 - Powering off the front-ends during the quiet time
- Power saving of a Factor 100 → No Active cooling

From HL-LHC to ILC

Working on the material budgets

R&D on Services,
Powering, Mechanics
Cooling

Marcel Stanitzki

Time-Stamping is good for you ...

- Collision at the ILC are not background-free
- Main sources
 - Beam-Beam interactions
 - Muon halo (from collimators)
 - Neutron flux from the beam dump
- Timing matters
 - Within a bunch-train (500 ns)
 - Between bunches (20 ns)

Muon halo (1 ILC train)

Neutron Cloud

Looking in more detail

- Understanding the beam background essential
 - Impacts Detector Geometry
 - Electronics design

2 Detectors & 1 IP → Push Pull

- Interaction Region Campus
 - Campus located in the Kitakami mountains
 - Assembly hall, service buildings
 - Access to IP using vertical shafts
- The ILC has only one interaction region
 - Two detectors share the IP in a push-pull configuration
 - Detectors on platforms
 - Swap-over in 48-72 hours

How does this compare to the LHC?

Improvement compared to LHC detectors

ILC Requirements for Timing, Data rate and Radiation hardness are very modest compared to LHC

Marcel Stanitzki

SiD & ILD - Two PFA Implementations

- SiD
 - $r_{tracker} = 1.25 \text{ m}$
 - B = 5 T
 - All-silicon tracking

- ILD
 - $r_{Tracker} = 1.8 \text{ m}$
 - B = 3.5 T
 - **Time Projection Chamber**

And the detector technologies ??

- See e.g. these great talks
 - Silicon track detectors for linear colliders (S. Spannagel)
 - CALICE developments for LC calorimeters (C. Graf)
 - Gaseous Tracking for Linear Colliders (J. Kaminski)

The Idea behind SiD

- Compact All Silicon PFA detector
- Design choices
 - Compact design with 5 T field
 - Robust silicon vertexing and tracking system with excellent momentum resolution
 - Highly granular Calorimetry optimized for Particle Flow
 - Time-stamping with single bunch crossing resolution
 - Iron flux return/muon identifier is part of the SiD self-shielding
 - Detector is designed for rapid push-pull operation
 - Well defined baseline with further technology options

SiD's History

2006: Detector **Outline Document** 2009: SiD Letter Of Intent

2013: ILC TDR/DBD

2008/9: CLIC SiD **Starts for Multi-TeV** machines

2009: SiD validated

2017: ILC **Re-baselining To 250 GeV**

2007: Detector **Concept Report** First SiD workshop

2011: CLIC **Physics and Detectors Conceptual Design** Report

2014: Site studies

2019: Japanese "Decision" 333

Concept Phase

Lol Phase Marcel Stanitzki **DBD** Phase

The Ideas behind ILD

- Large PFA detector build around a TPC
- Design choices
 - TPC with silicon envelopes for tracking and PiD
 - Highly granular Calorimetry optimized for Particle Flow
 - 3.5 T field driven by TPC and coil constraints
 - Iron flux return/muon identifier is part of the ILD self-shielding
 - Detector is designed for rapid push-pull operation
 - Trying to accommodate many technology choices

ILD's history

- Similar to SiD but small differences
- A Merger between LDC and GLD in 2008
 - LDC: TPC + 4 T, originating from TESLA
 - GLD: TPC+ 3 T, originating from JLC
- From the Lol's it's very similar

Comparison Table

	SiD	ILD
Vertex Detector	5 pixel layer	3 doublesided pixel layers
Tracker	5 layer Silicon Strips	2 Silicon Layers TPC 2 Silicon Layers
ECAL	SiW 30 layers	SiW 30 layers Scint-W 30 layers
HCAL	Fe+Scint 40 layers	Fe+Scint 48 layers FE+RPC 48 layers
Coil	5 T r _{inner} = 2.6 m	3.5 T r _{inner} = 3.4 m

Main Difference - Tracking

- All-silicon Tracking
- Tracking system
 - 5 layer pixel Vertex detector
 - 5 layer Silicon strip tracker
- Few highly precise hits
 - Max 12 hits
- Low material budget
- All silicon approach used by CMS, ATLAS & CMS Upgrades

- Gaseous Tracking
- Tracking System
 - 3 double layer Vertex detector
 - Intermediate silicon layers
 - TPC
- Max number of hits
 - 228
- High hit redundancy
- Classical approach (ALEPH, DELPHI)

Marcel Stanitzki

Evolving designs...

- SiD moved from Digital HCAL with RPCs to Analog HCAL with Scintillator/SiPM
 - SiD Internal Review and Consortium Approval
- Rationale
 - Huge progress with SiPM technology (Industrialized)
 - CALICE AHCAL prototypes very successful
 - Addressed and overcame many previous criticisms
 - CALICE DHCAL prototypes very successful
 - But Operation and Calibration is non-trivial
- System aspects
 - Eliminate elaborated Gas system & HV
 - DHCAL has not yet demonstrated a real performance edge

Summary

- The ILC detectors have come a long way
 - Basic design is sound and understood
 - But still many things need to be addressed → ok for the state of the project
- If the ILC will move forward
 - A detailed review of the designs will follow
 - e.g. Do we still want silicon strips?
- The ILC Detector R&D has been very successful
 - Many ideas have been picked up and made into real detectors

