

A detector for CLIC

Lucie Linssen, CERN on behalf of the CLICdp collaboration

Terascale Detector meeting, Lucie Linssen

CLIC physics and staged operation

Linear e⁺e⁻ collider, staging scenario motivated by maximum physics output

380 GeV (350 GeV) :	precision Higgs and top physics
1.5 TeV :	BSM searches, precision Higgs, ttH, HH, top physics
3 TeV :	BSM searches, precision Higgs, HH, top physics

Integrated luminosity [ab⁻¹] Integrated luminosity 6 Total 1% peak 0.38 TeV 1.5 TeV 3 TeV 4 2 0 5 15 10 20 25 0 Year

Stage \sqrt{s} [TeV] \mathscr{L}_{int} [ab⁻¹]10.38 (and 0.35)1.021.52.533.05.0

BSM searches: direct (up to \sim 1.5 TeV), indirect (>> TeV scales)

Polarised electron beam (-80%, +80%)

Ratio (50:50) at $\surd s{=}380GeV$; (80:20) at $\surd s{=}1.5$ and 3TeV

Coherent approach for CERN future colliders (running times, luminosity performance) **1.2×10⁷ sec/year** arXiv:1810.13022, Bordry et al.

Recent CLIC overview documents

Links: http://clic.cern/european-strategy

CLIC accelerator collaboration CLICdp collab. (det&phys)

clic.cern

Formal European Strategy submissions

- The Compact Linear e+e- Collider (CLIC): Accelerator and Detector (arXiv:1812.07987)
- The Compact Linear e+e- Collider (CLIC): Physics Potential (arXiv:1812.07986)

Yellow Reports

- CLIC 2018 Summary Report (CERN-2018-005-M, arXiv:1812.06018)
- CLIC Project Implementation Plan (CERN-2018-010-M)
- The CLIC potential for new physics (CERN-2018-009-M, arXiv:1812.02093)
- Detector technologies for CLIC [In collaboration review]

Journal publications

- Top-quark physics at the CLIC electron-positron linear collider [In journal review] (arXiv:1807.02441)
- Higgs physics at the CLIC electron-positron linear collider (Journal, arXiv:1608.07538)
 - Projections based on the analyses from this paper scaled to the latest assumptions on integrated luminosities can be found here: CDS, arXiv.

CLICdp notes

- Updated CLIC luminosity staging baseline and Higgs coupling prospects (CERN Document Server, arXiv:1812.01644)
- CLICdet: The post-CDR CLIC detector model (CERN Document Server)
- A detector for CLIC: main parameters and performance (CERN Document Server, arXiv:1812.07337)

13 Mar 2019

Terascale Detector meeting, Lucie Linssen

overview of CLIC parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb^{-1}	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	N	10^{9}	5.2	3.7	3.7
Bunch length	σ_{z}	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	\sim 40/1
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	900/20	660/20	660/20
Final RMS energy spread	-	%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

readiness of CLIC technology

Many simulations, large diversity of hardware tests, system tests at many labs... → beyond the scope of this talk

E.g. CTF3 successfully demonstrated:

- ✓ drive beam generation
- ✓ RF power extraction
- two-beam acceleration up to a gradient of 145 MeV/m

civil engineering and infrastructure

Detailed recent updates on:

- Civil engineering
- Electrical systems
- Cooling and ventilation
- Transport, logistics and installation
- Safety, access and radiation protection systems

Crucial for cost/power/schedule

1000

Tunnel inner diameter 5.6 m

arXiv:1812.06018

civil engineering

Main 380 GeV surface infrastructures fit on CERN-owned land

arXiv:1812.06018

13 Mar 2019

clc		powe	r						
6 1 33 53 9 45	A Main-beam injector Main-beam dampir Main-beam booste Drive-beam injector Drive-beam freque Two-beam acceleration Infrastructure and s Controls and operation [MWV]	rs ng rings r and transport rs ncy multiplication and transpo ation ervices tions	Energy [TWh] per year	3	0.38 TeV		1.5 TeV		TeV
Collision energy [GeV]	Running [MW]	Standby [MW]	Off [M]		5	10	15	20	25 Year
380	168	25	0						
1500	364	38	13						
3000	589	46	17						

Power estimate studied bottom up (focus on 380 GeV case)

• Large reductions since CDR: better estimates of nominal settings, optimised drive-beam complex, more efficient klystrons, optimized injectors, etc

Further savings possible

1.5 TeV and 3 TeV power <u>not yet optimized</u> => will be done next

Terascale Detector meeting, Lucie Linssen

arXiv:1812.06018

cost estimate

Accelerator cost (incl. infrastructures)

CLIC 380 GeV drive-beam based : 5890^{+1470}_{-1270} MCHF

For upgrade to 1.5 TeV \rightarrow add ~5100 MCHF For upgrade to 3 TeV \rightarrow add another ~7300 MCHF

Cost of the experiment

arXiv:1812.06018

CLIC technology applications

Collaboration with many facilities Photon sources, medical applications Lots of experience being built up

See academic training W. Wuensch https://indico.cern.ch/event/668151/

One example: SwissFEL

- 104 C-band structures, 5.7 GHz, 2 m long
- Beam up to 6 GeV at 100 Hz
- Similar μ m-level tolerances
- Length ⇔ 800 CLIC structures

CLIC experimental conditions

Parameter	380 GeV	1.5 TeV	3 TeV		
Luminosity \mathcal{L} (10 ³⁴ cm ⁻² sec ⁻¹)	1.5	3.7	5.9		
\mathcal{L} above 99% of \sqrt{s} (10 ³⁴ cm ⁻² sec ⁻¹)	0.9	1.4	2.0		Drives timing
Repetition frequency (Hz)	50	50	50.1	~	requirements
Bunch separation (ns)	0.5	0.5	0.5		for CLIC
Number of bunches per train	352	312	312	detect	detector
Beam size at IP σ_x / σ_y (nm)	149/2.9	~60/1.5	~40/1	K	Verv small
Beam size at IP σ _z (μm)	70	44	44		beam

Crossing angle ~20 mrad, electron polarization $\pm 80\%$

beam-induced backgrounds at CLIC

arXiv:1812.06018

13 Mar 2019

Terascale Detector meeting, Lucie Linssen

detector performance requirements

CLIC detector

B-field = 4 T

forward region and MDI

Last focusing elements in accelerator tunnel, L*=6 m. Detector kept short along beam line.

Service cavern (left), experimental cavern (right)

Forward detector region comprising beam feedback system and forward calorimeters:

- LumiCal (39 > θ >134 mrad)
- BeamCal (10 > θ > 46 mrad)

 \Leftarrow FCAL collaboration

Luminosity measurement down to *few* 0.1% Forward coverage for electrons/photons

vertex and tracking detectors

Vertex detector

Requirements:

low mass: $0.2\%X_0$ per layer low power: 50 mW/cm² for air cooling single point resolution: 3 μ m hit time resolution: ~5 ns

Implementation and R&D:

silicon-based (pixels, hybrid or monolithic) 3 double layers spiraling petals to facilitate air cooling power pulsing

See talk: Simon Spannagel

Tracker

Requirements:

low mass: 1-2%X₀ per layer single point resolution: 7 μ m hit time resolution: ~5 ns

Implementation and R&D:

silicon-based (pixels, monolithic) power pulsing water cooling (below atm. pressure)

calorimetry and PFA

Jet energy resolution + background suppression for optimal detector design => => fine-grained calorimetry + Particle Flow Analysis (PFA)

calorimetry

Electromagnetic calorimeter: Silicon – tungsten

- 2 mm tungsten plates, 500 μ m silicon sensors
- 40 layers, 22 X₀ or 1 λ_1 , 5×5 mm² cells
- ~2500 m² silicon, 100 million channels

Hadronic calorimeter: Scintillator – steel

- 19 mm steel plates, 3 mm plastic scintillators + SiPM
- 60 layers, 7.5 λ_1 , 30×30 mm² cells
- ~9000 m² scintillator, 10 million channels

Developed by CALICE collaboration

Technology choices similar to CMS HGCal upgrade project

See talks: Christian Graf and Thorben Quast

detector occupancies

Triggerless readout, once per full (156 ns) bunch train

Expect at most one hard e⁺e⁻ collision per bunch train Detector occupancies dominated by beamstrahlung

Detector designed to achieve occupancies below 3-4%

Drives cell sizes:

beam pipe

50

Max. vertex pixel size $25*25 \ \mu m^2$

vertex detector

100

Max. tracker cells size depends on location: $max 0.05 mm^2 - 0.5 mm^2$

150

200

250

• IP

E 60

50

40

30

20

10

ш

350

z [mm]

300

3 TeV

ch.part.

mm²· bx

(cylindrical

projection)

10⁻¹

10⁻²

background suppression

Highly granular calorimetry + precise hit timing ↓
Very effective in suppressing backgrounds for fully reconstructed particles ↓
General trend for e⁺e⁻ and pp colliders

tracking performance

Detector description (*in DD4hep*), detector simulation (*in Geant4*) and reconstruction implemented in **iLCSoft framework**

Tracking based on conformal tracking and Kalman-filter based fit

PFA, jet energy reconstruction

PandoraPFA particle flow analysis used for jet energy reconstruction and particle ID. Combined with **jet clustering optimized for e**⁺e⁻ (**VLC** Valencia algorithm)

- Jet energy resolution from $Z/\gamma^* \rightarrow qq$, compare reconstruction with MC truth
 - → Objective of 3.5-5% jet energy resolution achieved for high-E jets in most of angular range
 - → Impact from 3 TeV backgrounds largest for low-energy jets, resolution 6-8%
- W/Z mass separation in 2-jet events: 2σ separation with VLC7 jets, including 3 TeV bkg

arXiv:1812.07337

flavour tagging performance

LCFIplus package used for flavour tagging

Studied in 500 GeV di-jet events, with and without $\gamma\gamma \rightarrow$ hadrons background (3TeV equivalent)

physics at CLIC

Measurement of SM particles with high precision: in particular **Higgs boson** and **top quark**

BSM sensitivity through:

 probing SM Effective Field Theories with unprecedented precision

 direct and indirect BSM searches that significantly extend reach of HL-LHC, including new particles in challenging non-standard signatures

13 Mar 2019

Higgs coupling sensitivity

Full Geant4 simulation/reconstruction (including beam backgrounds) at all 3 stages → global fit including correlations

Precision <1% for most couplings

c/b/W/Z/g couplings significantly more precise than HL-LHC even after 380 GeV stage

 $\Gamma_{\rm H}$ is extracted with 4.7 – 2.5% precision

Each energy stage contributes significantly

updated to new luminosity scenario

27

Higgs self-coupling

top quark physics at CLIC

- FCNC top decays
- ttH incl. CP analysis

 e^{t} $X = Z, \gamma$ \overline{t}

 $e^+e^- \rightarrow tt \rightarrow WbWb$

 \rightarrow complementarity

- coupling to Z and γ
- forward-backward asymmetry
- EFT interpretation

First e⁺e⁻ study of boosted top production, using jet substructure in reconstruction

arXiv:1807.02441

EFT

Include CLIC Higgs, top, WW, and e⁺e⁻->ff measurements in global fit to constrain dimension-6 EFT operators

Strongly benefits from high-energy running

precision reach of the Universal EFT fit January 2019 10² HL-LHC (3/ab, S1) + LEP/SLD light shade: CLIC + LEP/SLD HL-LHC (3/ab, S2) + LEP/SLD solid shade: combined with HL-LHC(S2) **CLIC Stage 1** blue line: individual reach CLIC Stage 1+2 vellow mark: additional result 10 CLIC Stage 1+2+3 Smaller value corresponds с_і / Л² [ТеV⁻²] to higher scale Λ probed 10^{-1} 10⁻² 10^{-3} c_{WW} c_{3W} $c_{GG^{\times 10}}$ *c*_{WB} $C_2 W^{\times 10^2} C_2 B^{\times 10^2}$ C_H **C**_{BB} C_{HW} **C**HB C_{V_f} CT C_6 benefits from effects grow with energy

arXiv:1812.02093

13 Mar 2019

e+e-->HH

time line

Technology-driven schedule, from start of construction.

After an in principle go ahead, min. 5 years are needed before construction can start.

=> First beams could be available by 2035

CLIC is a very attractive post-LHC facility for CERN

Unprecedented, diverse and guaranteed excellent physics reach

thanks to lepton collider precision AND multi-TeV collisions

Demonstrated accelerator technologies

Feasible timescale

CLIC staging brings cost staging, and accompanying affordability

(cost of CLIC 380 GeV + 1.5 TeV < cost of FCC-ee)

Linear tunnel provides a natural infrastructure for future, beyond CLIC

 $H \rightarrow b\bar{b}$ (58% BR): selection efficiency ~40% (1.4 TeV), ~50% (380 GeV)

reserve slides

pp collisions / e⁺e⁻ collisions

to address the open questions in particle physics

p-p collisions	e⁺e⁻ collisions
 Proton is compound object → Initial state unknown → Limits achievable precision 	 e⁺/e⁻ are point-like → Initial state well defined (√s / opt: polarisation) → High-precision measurements
 High rates of QCD backgrounds → Complex triggering schemes → High levels of radiation 	 Cleaner experimental environment → Less / no need for triggers → Lower radiation levels
High cross-sections for colored-states	Superior sensitivity for electro-weak states
Very high-energy circular pp colliders feasible	High energies (>≈350 GeV) require linear collider

pp collisions / e⁺e⁻ collisions

e⁺e⁻ events are more "clean"

high-energy e⁺e⁻ collider studies

Future Circular Collider (FCC-ee): CERN e⁺e⁻, √s: 90 - 365 GeV; FCC-hh pp Circumference: 97.75 km

International Linear Collider (**ILC**): Japan (Kitakami) e⁺e⁻, √s: 250 – 500 GeV (1 TeV) Length: 17 km, 31 km (50 km)

clc

combined CLIC Higgs coupling results

Full CLIC program, ~7 yrs of running at each stage:

- Model-independent: down to $\pm 1\%$ for most couplings, ultimately limited by $g_{HZZ} \pm 0.6\%$
- Model-dependent: ±1% down to ± few ‰ for most couplings
- Accuracy on Higgs width: ±2.5% (MI)

eSPS electron beam (16 GeV)

Accelerator implementation at CERN of LDMX type of beam

- X-band based 70m LINAC to ~3.5 GeV in TT4-5
- Fill the SPS in 1-2s (bunches 5ns apart) via TT60
- Accelerate to ~16 GeV in the SPS
- Slow extraction to experiment in 10s as part of the SPS super-cycle
- Experiment(s) considered by bringing beam back on Meyrin site using TT10

X-band and high-gradient technology

Significant increase in test infrastructures at CERN

>100 MV/m accelerating structures

Prototype performance

rf design methodology

Fabrication technology

New physics reach

The precision measurements and searches can be interpreted in a wide range of model frameworks

Indicative CLIC reach for new physics. Sensitivities are given for the full CLIC programme covering the three centre-of-mass stages. All limits are at 95% C.L. unless stated otherwise. Details on many of these examples are given in The CLIC Potential for New Physics: <u>https://e-publishing.cern.ch/index.php/CYRM/issue/view/71</u>

Process	HL-LHC	CLIC
Higgs mixing with heavy singlet	$\sin^2\gamma < 4\%$	$\sin^2\gamma < 0.24\%$
Higgs self-coupling $\Delta \lambda$	$\sim 50\%$ at 68% C.L.	[-7%,11%] at 68% C.L.
$BR(H \rightarrow inv.)$ (model-independent)		< 0.69% at 90% C.L.
Higgs compositeness scale m_*	$m_* > 3 \mathrm{TeV}$	Discovery up to $m_* = 10 \text{TeV}$
	$(> 7 \text{ TeV for } g_* \simeq 8)$	(40 TeV for $g_* \simeq 8$)
Top compositeness scale m_*		Discovery up to $m_* = 8 \mathrm{TeV}$
		(20 TeV for small coupling g_*)
Higgsino mass (disappearing track search)	> 250 GeV	> 1.2 TeV
Slepton mass		Discovery up to $\sim 1.5 { m TeV}$
RPV wino mass ($c\tau = 300$ m)	> 550 GeV	> 1.5 TeV
Z' mass (SM couplings)	Discovery up to 7 TeV	Discovery up to 20 TeV
NMSSM scalar singlet mass	$> 650 \mathrm{GeV} (\tan\beta \le 4)$	$> 1.5 \mathrm{TeV} (\tan\beta \le 4)$
Twin Higgs scalar singlet mass	$m_{\sigma} = f > 1 \text{TeV}$	$m_{\sigma} = f > 4.5 \mathrm{TeV}$
Relaxion mass (for vanishing mixing)	< 24 GeV	< 12GeV
Relaxion mixing angle $(m_{\phi} < m_{\rm H}/2)$		$\sin^2 \theta \leq 2.3\%$
Neutrino Type-2 see-saw triplet		> 1.5 TeV (for any triplet VEV)
		$> 10 \text{TeV}$ (for triplet Yukawa coupling $\simeq 0.1$)
Inverse see-saw RH neutrino		$> 10 \text{ TeV}$ (for Yukawa coupling $\simeq 1$)
Scale $V_{LL}^{-1/2}$ for LFV ($\bar{e}e$)($\bar{e}\tau$)		> 42 TeV <u>https://arxiv.org/abs</u>

Terascale Detector meeting, Lucie Linssen