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CLIC physics and staged operation

Coherent approach for CERN future colliders (running times, luminosity performance)
1.2×107 sec/year       arXiv:1810.13022, Bordry et al.
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380 GeV (350 GeV) :        precision Higgs and top physics
1.5 TeV : BSM searches, precision Higgs, ttH, HH, top physics 
3 TeV : BSM searches, precision Higgs, HH, top physics 

BSM searches: direct (up to ~1.5 TeV), indirect (>> TeV scales)

Polarised electron beam (–80%, +80%)
Ratio (50:50) at √s=380GeV ; (80:20) at √s=1.5 and 3TeV

Linear e+e- collider, staging scenario motivated by maximum physics output

https://arxiv.org/abs/1810.13022
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Recent CLIC overview documents

Links: http://clic.cern/european-strategy

Covering: Accelerator
Detector 
Physics

CLIC accelerator collaboration

CLICdp collab. (det&phys)

clic.cern

http://clic.cern/european-strategy
http://clic.cern/
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CLIC complex, 380 GeV
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CLIC complex, 3 TeV
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overview of CLIC parameters
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https://arxiv.org/abs/1812.06018
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readiness of CLIC technology

E.g. CTF3 successfully demonstrated:
ü drive beam generation 
ü RF power extraction
ü two-beam acceleration up to a 

gradient of 145 MeV/m 

Many simulations, large diversity of hardware tests, system tests at many labs…
→ beyond the scope of this talk

CLIC test facility CTF3
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civil engineering and infrastructure

Detailed recent updates on: 
• Civil engineering 
• Electrical systems
• Cooling and ventilation 
• Transport, logistics and installation 
• Safety, access and radiation protection 

systems

Crucial for cost/power/schedule 

Tunnel inner diameter 5.6 m
Geological profile (flat earth surface projection) 

arXiv:1812.06018

https://arxiv.org/abs/1812.06018
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Main 380 GeV surface infrastructures 
fit on CERN-owned land

arXiv:1812.06018

https://arxiv.org/abs/1812.06018
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power

Power estimate studied bottom up (focus on 380 GeV case)
• Large reductions since CDR: better estimates of nominal settings, optimised

drive-beam complex, more efficient klystrons, optimized injectors, etc

Further savings possible
1.5 TeV and 3 TeV power not yet optimized =>  will be done next arXiv:1812.06018

[MW]

https://arxiv.org/abs/1812.06018
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cost estimate

For upgrade to 1.5 TeV → add ~5100 MCHF
For upgrade to 3 TeV → add another ~7300 MCHF

Accelerator cost (incl. infrastructures)

Cost of the experiment

arXiv:1812.06018

https://arxiv.org/abs/1812.06018
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One example: SwissFEL
• 104 C-band structures, 5.7 GHz, 2 m long
• Beam up to 6 GeV at 100 Hz
• Similar !m-level tolerances
• Length ó 800 CLIC structures

Collaboration with many facilities
Photon sources, medical applications
Lots of experience being built up
See academic training W. Wuensch
https://indico.cern.ch/event/668151/

13 Mar 2019

https://indico.cern.ch/event/668151/
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CLIC experimental conditions

Parameter 380 GeV 1.5 TeV 3 TeV
Luminosity L (1034cm-2sec-1) 1.5 3.7 5.9

L above 99% of √s (1034cm-2sec-1) 0.9 1.4 2.0

Repetition frequency (Hz) 50 50 50.1

Bunch separation (ns) 0.5 0.5 0.5

Number of bunches per train 352 312 312

Beam size at IP σx/σy (nm) 149/2.9 ~60/1.5 ~40/1

Beam size at IP σz (μm) 70 44 44

Drives timing
requirements
for CLIC 
detector 

Very small 
beam 

Crossing angle ~20 mrad, electron polarization ±80%

Very low duty cycle
allows for:

Triggerless readout
Power pulsing
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beam-induced backgrounds at CLIC
Beam-beam background at IP:
§ Small beams => very high E-fields

s Beamstrahlung

s Pair-background
sHigh occupancies

s γγ to hadrons
sEnergy deposits

�/�� q

q�/��

Simplified picture:
Design issue (small cell sizes)

Impacts on the physics
Needs suppression in data

Beamstrahlung è important energy losses
right at the interaction point
Most physics processes are studied well above 
production threshold => profit from full spectrum

Luminosity spectrum can be measured in situ  
using large-angle Bhabha scattering events,
to 5% accuracy at 3 TeV
Eur.Phys.J. C74 (2014) no.4, 2833

arXiv:1812.06018

http://link.springer.com/article/10.1140/epjc/s10052-014-2833-3
https://arxiv.org/abs/1812.06018
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detector performance requirements
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CLIC detector

B-field = 4 T
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forward region and MDI

Last focusing elements in accelerator tunnel, 
L*=6 m. Detector kept short along beam line.

Forward detector region comprising beam 
feedback system and forward calorimeters:
• LumiCal (39 > ! >134 mrad)
• BeamCal (10 > ! > 46 mrad)

Luminosity measurement down to few 0.1%
Forward coverage for electrons/photons

Service cavern (left), experimental cavern (right)

FCAL collaboration
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vertex and tracking detectors

Requirements:
low mass: 0.2%X0 per layer
low power: 50 mW/cm2 for air cooling
single point resolution: 3 !m
hit time resolution: ~5 ns

Implementation and R&D:
silicon-based (pixels, hybrid or monolithic)
3 double layers
spiraling petals to facilitate air cooling
power pulsing

Requirements:
low mass: 1-2%X0 per layer
single point resolution: 7 !m
hit time resolution: ~5 ns

Implementation and R&D:
silicon-based (pixels, monolithic)
power pulsing
water cooling (below atm. pressure)

Vertex detector
Tracker

See talk: Simon Spannagel
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calorimetry and PFA

Jet energy resolution + background suppression for optimal detector design
=> => fine-grained calorimetry + Particle Flow Analysis (PFA) 

Typical jet composition:
60% charged particles 
30% photons
10% neutral hadrons

ê

What is PFA?

Hardware + software !

Typical jet composition:
60% tracker
30% ECAL
10% HCAL
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calorimetry

Electromagnetic calorimeter: Silicon – tungsten
- 2 mm tungsten plates, 500 !m silicon sensors
- 40 layers, 22 X0 or 1 "I, 5×5 mm2 cells
- ~2500 m2 silicon, 100 million channels

Hadronic calorimeter: Scintillator – steel
- 19 mm steel plates, 3 mm plastic scintillators + SiPM
- 60 layers, 7.5 "I, 30×30 mm2 cells
- ~9000 m2 scintillator, 10 million channels

See talks: Christian Graf and Thorben Quast

Developed by CALICE collaboration

Technology choices similar to CMS HGCal upgrade project
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detector occupancies

Triggerless readout, once per full (156 ns) bunch train

Expect at most one hard e+e- collision per bunch train
Detector occupancies dominated by beamstrahlung

Detector designed to achieve occupancies below 3-4%

Drives cell sizes:
• Max. vertex pixel size 25*25 !m2

• Max. tracker cells size depends on location:
max 0.05 mm2 – 0.5 mm2

vertex detector

beam pipe

IP

vertex discs

tracker discs

arXiv:1812.07337

3 TeV

https://arxiv.org/abs/1812.07337
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background suppression

Highly granular calorimetry + precise hit timing
↓

Very effective in suppressing backgrounds
for fully reconstructed particles

↓
General trend for e+e- and pp colliders

same event before cuts on 
beam-induced background

e+e- è ttH è WbWbH è qqb τνb bb
--- - -

CLIC 1.4 TeV
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tracking performance

Detector description (in DD4hep), detector simulation (in Geant4) and 
reconstruction implemented in iLCSoft framework

Tracking based on conformal tracking and Kalman-filter based fit

Track momentum resolution 
for single particles
2×10-5 dpT/pT

2 achieved for 
high-momentum tracks

Tracking efficiency within 
light quark jets
With and without background

Tracking efficiency for 
displaced tracks 
(min 4 hits required)

arXiv:1812.07337

https://arxiv.org/abs/1812.07337
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PFA, jet energy reconstruction
PandoraPFA particle flow analysis used for jet energy reconstruction and particle ID.
Combined with jet clustering optimized for e+e- (VLC Valencia algorithm)

• Jet energy resolution from Z/!* → qq, compare reconstruction with MC truth
→ Objective of 3.5-5% jet energy resolution achieved for high-E jets in most of    

angular range
→ Impact from 3 TeV backgrounds largest for low-energy jets, resolution 6-8%

• W/Z mass separation in 2-jet events: 2# separation with VLC7 jets, including 3 TeV bkg

arXiv:1812.07337

https://arxiv.org/abs/1812.07337
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flavour tagging performance
LCFIplus package used for flavour tagging

Studied in 500 GeV di-jet events, with and without !! → hadrons background (3TeV equivalent)

arXiv:1812.07337

https://arxiv.org/abs/1812.07337
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physics at CLIC

Measurement of SM particles with high precision:

in particular Higgs boson and top quark

BSM sensitivity through:  

– probing SM Effective Field Theories with 

unprecedented precision

– direct and indirect BSM searches that significantly 

extend reach of HL-LHC, including new particles in 

challenging non-standard signatures

13 Mar 2019 Terascale Detector meeting, Lucie Linssen
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Higgs coupling sensitivity

Based on Eur. Phys. J. C 77 475 (2017)
updated to new luminosity scenario

Each energy stage contributes significantlyFull Geant4 simulation/reconstruction            
(including beam backgrounds) at all 3 stages
→ global fit including correlations

Precision <1% for most couplings

c/b/W/Z/g couplings significantly more precise 
than HL-LHC even after 380 GeV stage

GH is extracted with 4.7 – 2.5% precision

no assumptions on additional Higgs 
decays – unique to lepton colliders

13 Mar 2019 Terascale Detector meeting, Lucie Linssen

https://doi.org/10.1140/epjc/s10052-017-4968-5
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Higgs self-coupling

DgHHH/gHHH = +11%
–7%

complementary 
at 1.5TeV

Template fit at 3TeV using two variables: 
M(HH) differential distribution and BDT score

Gives unrivalled sensitivity 
to Higgs self-coupling:

gHHH
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Higgs self-coupling requires high energy

dominates 
at higher √s
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arXiv:1901.05897

https://arxiv.org/abs/1901.05897


top quark physics at CLIC
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Top mass from threshold scan 
around 350 GeV (100 fb-1)
observe 1S ‘bound 
state’, Δmt ~ 50–75 MeV

e+e– → tt → WbWb

First e+e– study of boosted top 
production, using jet substructure in 
reconstruction

e+e- → tt at all CLIC energies
→ complementarity

• coupling to Z and γ
• forward-backward asymmetry
• EFT interpretation

also:
• FCNC top decays
• ttH incl. CP analysis

arXiv:1807.02441

https://arxiv.org/abs/1807.02441
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precision reach of the Universal EFT fit

HL-LHC (3/ab, S1) + LEP/SLD
HL-LHC (3/ab, S2) + LEP/SLD
CLIC Stage 1
CLIC Stage 1+2
CLIC Stage 1+2+3

light shade: CLIC + LEP/SLD
solid shade: combined with HL-LHC(S2)
blue line: individual reach

yellow mark: additional result

January 2019
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EFT
Standard Model

Scale of new decoupled physics
Dimension-6
operators

Include CLIC Higgs, top, WW, and e+e––>ff
measurements in global fit to constrain 
dimension-6 EFT operators

Strongly benefits from high-energy running

effects grow with energy benefits from 
e+e––>HH

Smaller value corresponds 
to higher scale L probed

–

13 Mar 2019 Terascale Detector meeting, Lucie Linssen

arXiv:1812.02093

https://arxiv.org/abs/1812.02093
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time line

Technology-driven schedule, from start of construction.

After an in principle go ahead, min. 5 years are needed before construction can start.

=> First beams could be available by 2035
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CLIC is a very attractive post-LHC facility for CERN

Unprecedented, diverse and guaranteed excellent physics reach 

thanks to lepton collider precision AND multi-TeV collisions 

Demonstrated accelerator technologies 

Feasible timescale 

CLIC staging brings cost staging, and accompanying affordability

( cost of CLIC 380 GeV + 1.5 TeV < cost of FCC-ee )  

Linear tunnel provides a natural infrastructure for future, beyond CLIC
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THANK YOU !

e+e- è Hνν è bbνν- --

CLIC  1.4 TeV

H à bb (58% BR): selection efficiency ~40% (1.4 TeV), ~50% (380 GeV) -
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reserve slides

13 Mar 2019
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pp collisions / e+e- collisions

electron
positron

p-p collisions e+e- collisions
Proton is compound object
à Initial state unknown 
à Limits achievable precision

e+/e- are point-like
à Initial state well defined (√s / opt: polarisation)
à High-precision measurements

High rates of QCD backgrounds
à Complex triggering schemes
à High levels of radiation

Cleaner experimental environment
à Less / no need for triggers
à Lower radiation levels

High cross-sections for colored-states Superior sensitivity for electro-weak states

Very high-energy circular pp colliders 
feasible

High energies (>≈350 GeV) require linear collider

protonp

p

g

t

t

t

H

g

to address the open questions in particle physics
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pp collisions / e+e- collisions

• Interesting pp events need to be 
found within a huge number of 
collisions

• e+e- events are more “clean”
collision energy

e+e- processes

pp cross section

factor > 108

collision energy

pp and e+e- collisions 
provide complementary 
physics information 
=> important for our field to 
have both !
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high-energy e+e- collider studies

Future Circular Collider (FCC-ee): CERN
e+e-, √s: 90 - 365 GeV; FCC-hh pp
Circumference: 97.75 km

Circular Electron Positron Collider 
(CEPC), China
e+e-, √s: 90-240 GeV; SPPC pp, 
Circumference: 100 km

37Linssen, Vulcano workshop 2018

International Linear Collider (ILC): 
Japan (Kitakami)
e+e-, √s: 250 – 500 GeV (1 TeV)
Length: 17 km, 31 km (50 km)

Compact Linear Collider (CLIC): CERN
e+e-, √s: 380 GeV, 1.5 TeV, 3 TeV
Length: 11 km, 29 km , 50 km



combined CLIC Higgs coupling results
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LHC-like fit, assuming SM decays only.
Fit to deviations from SM BR’s

Full CLIC program, ~7 yrs of running at each stage:
• Model-independent: down to ±1% for most couplings, ultimately limited by gHZZ ±0.6%
• Model-dependent: ±1% down to ± few ‰ for most couplings
• Accuracy on Higgs width: ±2.5% (MI)

Higgs width is a free parameter, 
allows for additional non-SM decays

Terascale Detector meeting, Lucie Linssen
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https://arxiv.org/abs/1608.07538
https://doi.org/10.1140/epjc/s10052-017-4968-5


eSPS electron beam (16 GeV)
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X-band and high-gradient technology
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Significant increase in test infrastructures at CERN

rf design methodology
Fabrication technology

Prototype 
performance

>100 MV/m accelerating 
structures

13 Mar 2019
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New physics reach

Indicative CLIC reach for new physics.  Sensitivities are given for the full CLIC 
programme covering the three centre-of-mass stages.  All limits are at 95% C.L. 
unless stated otherwise.  Details on many of these examples are given in 
The CLIC Potential for New Physics: https://e-publishing.cern.ch/index.php/CYRM/issue/view/71

The precision measurements and searches can be 
interpreted in a wide range of model frameworks

https://arxiv.org/abs/1812.07986
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https://e-publishing.cern.ch/index.php/CYRM/issue/view/71
https://arxiv.org/abs/1812.07986

