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Starting in 2026 at CERN: High-Luminosity LHC
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Phase 0 Phase 1 Phase 2 (HL-LHC)

Nominal scenario

➡The HL-LHC will provide >5 (x10) instantaneous (integrated) luminosity of LHC



LHC —> HL-LHC: More activity in the CMS detector
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Pile-up 
• 140 - 200 collisions per bunch crossing >> 3-4x larger than in run 2

‣ spread over few centimeters

‣ spread over O(200) ps

Nominal 5E34 luminosity “Ultimate” 7.5E34 luminosity 

HL-LHC: O(140) p-p collisions in one bunch crossing HL-LHC: A lot of activity in the CMS detector

O(6cm)



LHC —> HL-LHC: Increased radiation level
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HL-LHC: up to 1016 neq / cm2 in CMS endcap

Signal degeneration during HL-LHC

Constant term ~ 10% after 3000fb-1
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Current CMS detectors designed for end of run 3 (300fb-1).

➡ECAL crystals & HCAL scintillators would suffer from 
irreparable radiation damage during HL-LHC.



➡CMS will replace its endcap calorimeters for HL-LHC
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Tracker:

Radiation tolerant,

high granularity,

less materials, tracks in 

hardware trigger (L1), 

coverage up to |η| = 3.8

Barrel Calorimeter:

New BE/FE electronics,

ECAL: lower temp., 

HCAL: partially new scintillator

Muon system:

New electronics

GEM/RPC coverage in 

1.5 < |η| < 2.4, 

investigate muon tagging at 

higher ηEndcap calorimeters: 

Coverage 1.5 < |η| < 3.0 
…

Current endcap 
calorimeter (half)



Endcap calorimeter upgrade proposal
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CALICE - inspired idea 
An all-new ‘imaging’ calorimeter with unprecedented readout granularity that offers 

robustness and good performance through the full HL-LHC operational lifetime.

Requirements
Radiation tolerance


fully preserving the energy resolution after 3000 fb-1

Dense calorimeter

preserve lateral compactness of showers

Fine lateral granularity

two shower separation + observation of narrow jets,


minimise pileup contributions in energy & 

timing measurements

Fine longitudinal granularity

fine sampling of the shower: good energy resolution,


pattern recognition, pile-up discrimination, …

Precision time measurement

high energy showers for pile-up rejection,


primary vertex identification

Contribute to L1 (Hardware) trigger

Future endcap 
calorimeter



CMS High-Granularity Calorimeter (HGCAL)
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Calorimeter Endcap 
Electromagnetic (CE-E)
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Calorimeter Endcap 
Hadronic (CE-H)

Sensor arrangement in the layers
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HGCAL = Sampling calorimeter

•Silicon sensors in CE-E and high 
radiation regions of CE-H


•Scintillating tiles with SiPM readout 
in low-radiation regions of CE-H

Both endcaps Silicon Scintillators
Area 600m2 500m2

#Modules 27000 4000
Channel size 0.5 - 1 cm2 4-30 cm2

#Channels 6 M 400 k
Op. temp. -30 ° C -30 ° C

Per endcap CE-E CE-H (Si) CE-H (Si+Scint)
Absorber Pb, CuW, Cu Stainless steel, Cu

Depth 26 X0, 1.5 λ 9 λ
Layers 28 8 16
Weight 23t 205 t

Silicon

Scintillator

Silicon

Scintillator



HGCal = 3D imaging calorimeter
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CE-E

Layer 5

CE-E

Layer 8

CE-E

Layer 17

CE-E

Layer 11

Simulated VBF H (γγ) signatures in the granular endcap calorimeter 

VBF H (γγ)

jet

CE-H

Layer 28

CE-H

Layer 29

CE-H

Layer 30

+
200 PU



HGCal = 3D imaging calorimeter with timing capabilities
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VBF H (γγ)

jet

+ 200 PU

Layers projected onto one plane 
-no timing cut applied-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Layers projected onto one plane 
-require hits within 90ps time window-

Pileup hits
Pileup hits

Pileup hits

Pileup hits
Pileup hits

Similar concept as 

foreseen for



Design and prototyping
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Silicon sensors: Radiation hard and fast signals 
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Silicon sensors 
•For regions with high fluences, HGCAL uses 600m2 of silicon

•Hexagonal wafers to maximise used area (—> minimise costs)

•Followed HEP standard initially 6’’ wafers. New baseline: 8’’

8’’ prototype sensor

Different sensor thicknesses for different regions

Silicon-only ~10ps timing resolution

CERN H2 2016

‣Operation at -30° C: Reduce increasing bulk leakage current

‣ Increasing the bias voltage up to -800V to reduce signal loss

Minimising 
degradation
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Silicon sensor characterisation: IV and CV
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➡Per-batch sensor tests before module assembly 
• IV and CV, interpad capacitance and resistance measurement

Electrical behaviour of silicon sensors crucial for HGCAL powering budget. Probe- and switchcard design

HGCAL silicon sensor test probe station  
of the EP-LCD group at CERN

➡Switching and probe-card setup 
•Contact all cells via pogo-pin card

•Switch between channels using switching card

•All pads biased while one is tested

•Pro: time efficient (typical IV: ~1hr per wafer)
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Silicon modules and cassettes
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PCB

Silicon sensor

Kapton sheet

Baseplate

6’’ prototype module

Silicon modules 
Sandwich of PCB, sensor, biasing layer and baseplate for rigidity/cooling.

•Challenge: wire-bonding from PCB onto silicon

•CE-E baseplates act as absorbers (CuW)

•CE-H: PCB baseplates (good thermal properties and cheaper)

CE-E cassettes 
Self-supporting sandwich structures (with absorbers)

•Modules placed on both sides of Cu cooling plate and closed with Pb 
plates

O(1.5m)

Pb absorber
Motherboard

Module PCB
ASICs

Silicon
CuW baseplate

Cu cooling plate
CuW baseplate

…
Silicon



Scintillator+SiPM for lower radiation region
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CALICE AHCAL SiPM-on-tile prototype

~500m2 of scintillator for regions of lower 
radiation 
•Rely on experience from CALICE and CMS HCAL upgrade

➡Radiation hardness of scintillators & Si-PMs well understood

➡Overall S/N for MIP remains > 5 after 3000 fb-1

SiPM-on-tile design 
•400k SiPMs integrated into the PCB, 
need to be cooled


• readout directly on detector

•more compact and cost-effective

R&D commitment from DESY 
• e.g. validate interplay SiPM  - HGCROC

• e.g. assembly and quality control

•…

S/N > 5 after 3000fb-1>50% scintillator signal  
after 3000fb-1



HGCAL tile-modules
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R&D commitment from DESY ctd. 
• e.g. tile-board development

• e.g. tile-board characterisation 
(electronically, thermo-mechanically)


•…

Motherboard

Arranging scintillator tiles in r-φ grid 

with constant azimuthal angle:


4 - 32 cm2 area / tile

zoom in

Mixed cassette in CE-H

Tile-module = 
tile-board + scintillator

New technical challenges 
•High-speed data transfer

•Cooling of SiPMs through 
PCB


•Thermo-mechanical rigidity 
+/- 40 °C


•Radiation hardness

zoom out



Longitudinal structure and lateral coverage
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Longitudinal sampling 
52 layers for total depth of 10 λ

CE-E: 28 fine samplings for 26 X0 / 1.5 λ

CE-H (1): 12 samplings in the first 3.5 λ

CE-H (2): 12 samplings in the last 5 λ


Main constraint: fit into existing detector endcap —> limited space

• e.g. air gap in CE-E: limited space, very difficult for electrical 
components and connectors

Inner/Outer coverage 
Best coverage by (currently) 18 variants of hexagonal modules

coverage & complexity



Towards mass production of detector elements
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30 x 30 x 3 mm3 tiles, hand-wrapped, placed by automatic gantry

Automated assembly for CALICE prototypes:  
28000 tiles on 158 boards

Automated assembly of silicon prototypes: 
O(100) modules for beam tests

6’’ prototype modules assembled by automatic gantry, 
previously used for CMS tracker assembly

Silicon 

modules

Scintillator

+SiPM

Assembly centre development at five locations around the world.

Leading institutes: UCSB (Si) and DESY (Scint.+SiPM)

UCSB
Uni Mainz



Front-end electronics are challenging
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System overview

3

Front-end electronic requirements: 
•Low noise (<2500e) and high dynamic range (0.2fC -10pC)

•Timing information to tens of picoseconds 
•Computation of trigger sums

•Buffering to 12.5μs L1 latency

•<20mW per channel (cooling limitation)

•…

HGCROC ASIC both for silicon and SiPMs

final ROC submission by 2021!

Modules

Motherboards

Dummy cassette with 3 modules attached to 1 motherboard



Trigger objects from HGCAL
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On-detector:

 1.5μs

Off-detector: 3.5μs

Trigger cell sums 2D clusters per layer (NN) 3D clusters40TB/s 20TB/s 2TB/s300TB/s

Time multiplexing

“Serenity” BE board  
in development

up to 96 links in and out, 
each 16 Gb/s

➡Profit from generic boards

for whole CMS trigger and

DAQ systems



Requirements become features
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✓ Radiation tolerance

fully preserving the energy resolution after 3000 fb-1

✓ Dense calorimeter

preserve lateral compactness of showers

✓ Fine lateral granularity

two shower separation + observation of narrow jets,


minimise pileup contributions in energy & 

timing measurements

✓ Fine longitudinal granularity

fine sampling of the shower: good energy resolution,


pattern recognition, pile-up discrimination, …

✓Precision time measurement

high energy showers for pile-up rejection,


primary vertex identification

✓Contribute to L1 (Hardware) trigger

Future endcap 
calorimeter

Many engineering challenges not mentioned: 
•2x 250 t detector to assemble and install

•Operation at -30°C will require two-phase CO2 cooling system

•…



Does the design meet the expectation?
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Beam tests of HGCal prototypes since 2016
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๏ Main objectives for beam tests:


‣ Technological prototyping of the 
detector modules


‣ First experience with a FE ASIC with 
components of the ultimate 
(HGC)ROC in beam conditions:       
ADC, ToT, ToA


‣ Physics performance of the CE-E and 
CE-H silicon / scintillator parts


‣ Check agreement with simulation

 @ DESY

 3 modules


 @ CERN’s SPS

 full CE-E: 28 modules


 @ CERN’s SPS

 full prototype: 94 modules

Ti
m

e

➡ N. Akchurin et al 2018 JINST 13 P10023

First beam tests with Skiroc2-CMS ASIC

2016

2017

March 2018

June 2018

October 2018

http://iopscience.iop.org/article/10.1088/1748-0221/13/10/P10023/pdf


HGCal prototype modules
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6’’ silicon sensors:

• n-type, 128 cells

• 1 cm2 cell-size

• depletion: 200 & 300μm

Modules assembled as glued stack of baseplate, Kapton®, Si sensor and PCB:

Si sensor 

• Skiroc2-CMS ASIC,

64 ch., 4 chips/module


• Developed for CALICE 
(Skiroc2) & adjusted for 

HGCal requirements

PCB

• CuW

• Cu 

baseplate Kapton®

• Gold plated+ gluing

wire bonding

12.5cm

Copper cooling
plate

7-module “daisy” layer in CE-H-Si

1-module layer in CE-E

Activ
e 

mate
ria

l



HGCal prototype absorbers & mechanics
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October 2018 - Configuration #2

October 2018 - Configuration #3

few hours!

• CE-E: 
‣ material: Pb, W, Cu 
‣ thickness: 5-6 mm 

• CE-H-Si: 
‣ material: Fe 
‣ thickness: 4 cm 
‣ weight: O(1000kg) 

42 cm, 26 X0, 1 λ  

70-80 cm, 3-4 λ

42 cm, 26 X0, 1 λ  

70-80 cm, 3-4 λ

Pas
siv

e  

mate
ria

l CE-E

CE-H-Si

CE-E

CE-H-Si



Joint beam test efforts with CALICE  - AHCAL
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‣28-layer CE-E setup 
+12-layer CE-H-Si setup (94 modules) 
‣ 3 configurations tested


‣ Environmental control

‣ Delay Wire chambers

‣ Threshold Cherenkov counters

‣ MCPs for timing

‣CALICE  - AHCAL 

‣e, μ, hadrons up to 300 GeV 
‣ Trigger: 2x scintillators in front of CE-E    

+ 1x additional (veto) behind CE-H-Si


➡First large-scale test of                          
O(100) HGCal modules

Full test beam setup October 2018

!34Thorben Quast    17 January 2019

DWC E

scintillator
scintillator


+MCP

CALICE

AHCAL

CE-E

CE-H-Si
veto scintillator

VME readout

DCS (environment

control)

Beam

NIM crate

CALICE 
AHCAL



June 2018 run 407 - event 1: 
“150 GeV e-“

HGCAL = Imaging calorimeter
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CE-E



October 2018 run 517 - event 30: 
250 GeV π-

HGCAL = Imaging calorimeter
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CE-E CE-H-Si CALICE 
AHCAL
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CMS work in progress
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CERN H2 June 2018
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150 GeV electron beam
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http://iopscience.iop.org/article/10.1088/1748-0221/13/10/P10023/pdf


Does the design meet the expectation?


- Yes, it does.
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Busy times ahead
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• Important progress since the Technical Proposal and ongoing developments since the 
Technical Design report

• Next major step: Engineering Design Review due early-2021
• Validation of silicon sensors and SiPMs
• Final version of very front-end ASIC
• Si modules and scintillator tileboards designed
• Cassettes and mechanics design ready

• Production starting in 2021
• Challenges ahead towards the  

construction of the first large-scale  
high granularity calorimeter at colliders

Now 2021 2025/26

EDR
HGCAL1 

Integration

2023



Summary
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CM  High Granularity Calorimeter is an imaging 
calorimeter inspired by CALICE
• Harsh radiation environment, high pileup & 

occupancy during HL-LHC
• 3D energy & time measurement of particle showers
• Proof-of-concept through extensive prototyping and 

beam tests

• Challenging project in terms of mechanical and 
electrical engineering



Backup
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Backup
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Skiroc2-CMS designed to provide timing resolution of 50ps

‣ 2 MCPs for O(10ps) t0 measurement installed in front of CE-E

sensitive

area (~1cm2)

MCP

200ns
t0

Digitised MCP Waveform

MCP t0 w.r.t. falling clock edge [ns]

AS
IC

 ti
m

in
g 

[A
DC

]

waveform analysis for many events

➡Facilitated: Timing calibration

➡Possible: Unbiased measurement of timing resolution

CMS work in progress
CERN H2 October 2018

MCP-t0 correlation to HGCal ASIC timing

correlation: good



Backup
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Backup
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Felix Sefkow, 
31 Jan 2019



Backup
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Backup
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