

TERASCALE WORKSHOP 2019 SERIAL POWERING IN PIXEL DETECTORS

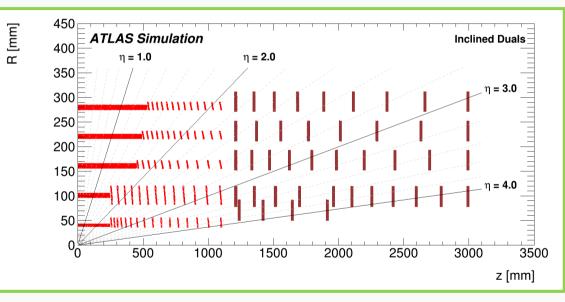
Matthias Hamer, University of Bonn

- why serial powering?

- key ingredients for a serially powered silicon pixel detector

- challenges in serial powering

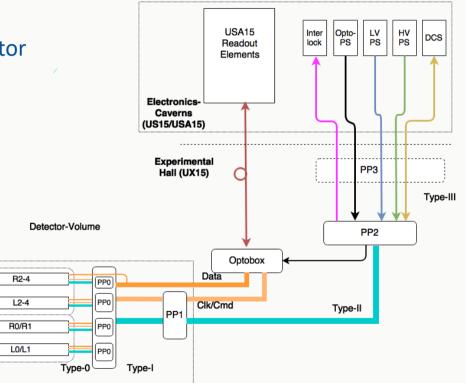
- why serial powering?
- of the ATLAS Pixel Detector as an mole - most of what will be shown applies to the CNIS upgrade in a very - key ingredients for a serially powered silicon pixel detector
- challenges in serial powering


Il mostly use the planned upgrade

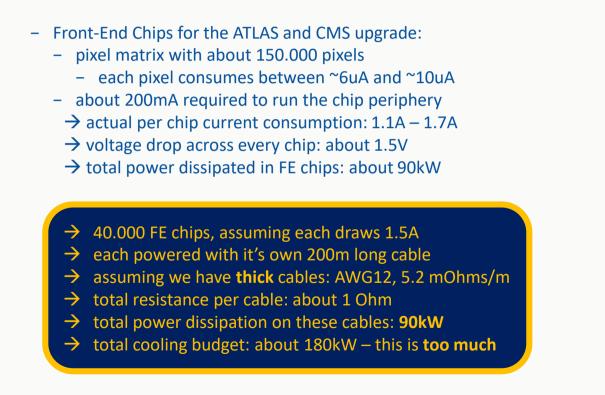
ATLAS INNER TRACKER PIXEL DETECTOR

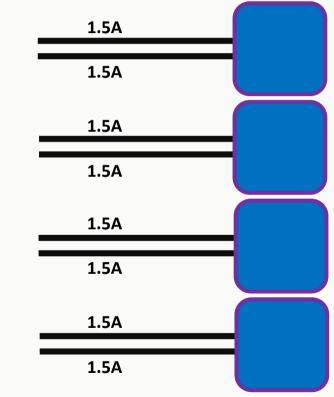
- 5 barrel layers:

- flat section up to z = 500mm
- inclined section up to z = 1200mm
- endcap rings up to z = 3000mmm
- coverage of tracks with $|\eta| < 4$
- about 10.000 hybrid pixel modules
 - ightarrow about 40.000 FE chips
- 50x50 μm^2 or 25x100 μm^2 pixels
- 2 innermost layers will be replaceable after collecting 2000 fb⁻¹


Candidate Layout for the ATLAS Pixel Upgrade

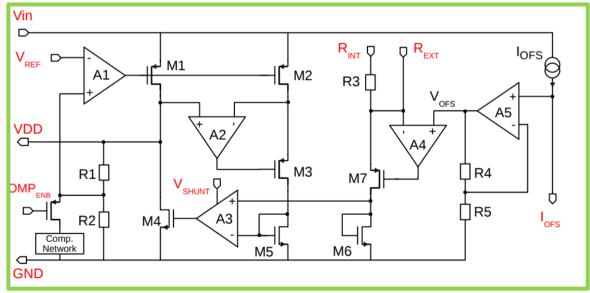
- general reference: CERN-LHCC-2017-21; ATLAS-TDR-030


SERVICES OVERVIEW


- services overview of the ATLAS ITk Pixel Detector
 - off-detector services
 - power supplies, readout electronics
 - Type-3 cables, about 60m-80m long
 - Type-2 cables, about 12m long
 - on-detector services
 - Type-1 cables, about 6m long
 - Type-0 services, about 1m long
 - → typical current path for a power line: about 200m

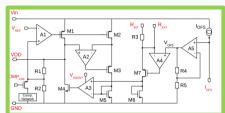
PARALLEL POWERING?

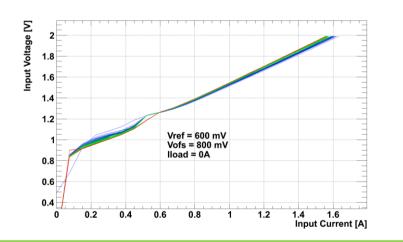
SERIAL POWERING


- recycle the current on-detector
 - average serial powering modularity: 8 modules
 - assuming single chip modules: losses on cables go down to 11kW
 - the number of cable we require also goes down by a factor of 8
 - \rightarrow less material in the detector
 - the number of required power supplies goes down by a factor of 8
 - ightarrow less space required in services caverns
- advantages come at a cost
 - actual current consumption per FE depends on instantaneous hit-rate
 - \rightarrow different instantaneous current consumption for all FE chips in a chain
 - voltage drop from one module to the next
 - ightarrow need AC coupled data transmission
 - \rightarrow with 3D modules: length of serial powering chain limited!
 - ightarrow biasing of sensors can get a little tricky
 - $\rightarrow \dots$

1.5A	
1.5A	

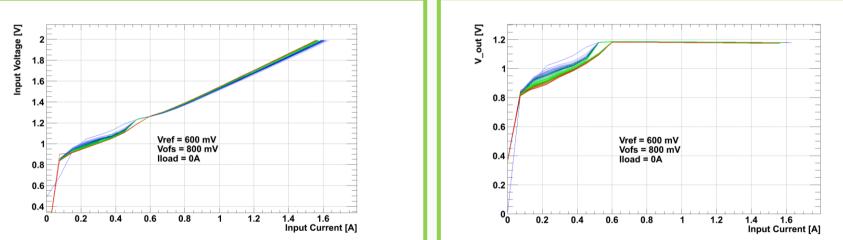
HOW TO POWER A SERIAL POWERING CHAIN


- provide as much current to the full chain at all times as we expect at peak hit-rate
 → constant current source
- each chip requires a local voltage regulator and a shunt to draw any surplus current
 → Shunt-LDO regulator



HOW TO POWER A SERIAL POWERING CHAIN

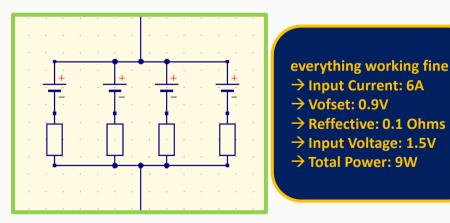
- provide as much current to the full chain at all times as we expect at peak hit-rate
 → constant current source
- each chip requires a local voltage regulator and a shunt to draw any surplus current
 → Shunt-LDO regulator

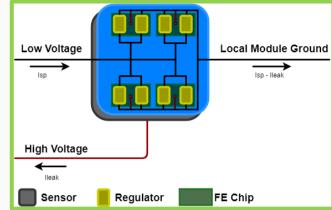

from the outside, this looks like a voltage source (Voffset) connected in series to a resistor (R3/k)

 \rightarrow constant voltage drop at constant current independent of actual chip current consumption

HOW TO POWER A SERIAL POWERING CHAIN

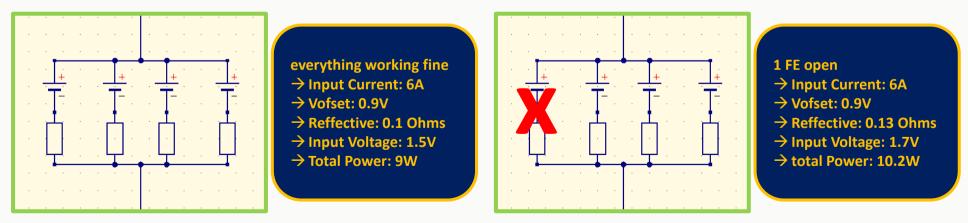
- provide as much current to the full chain at all times as we expect at peak hit-rate
 → constant current source
- each chip requires a local voltage regulator and a shunt to draw any surplus current
 → Shunt-LDO regulator

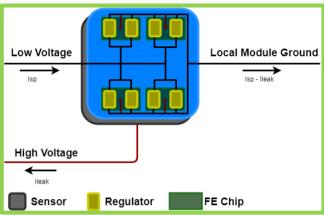

from the outside, this looks like a voltage source (Voffset) connected in series to a resistor (R3/k)


 \rightarrow constant voltage drop at constant current independent of actual chip current consumption

WHAT IF?

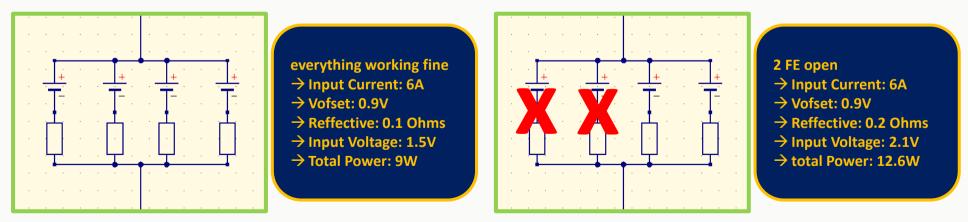
- a chip in the chain becomes high-ohmic?
 - the rest of the chain would be disabled
 - mitigate problem by connecting chips in parallel
 - \rightarrow SLDO regulators need to be able to shunt the extra current
 - ightarrow total voltage drop over the module must not exceed limits for safe operation
 - ightarrow thermal management of the module must be able to handle the extra power

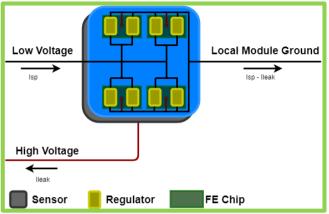




WHAT IF?

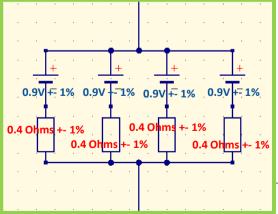
- a chip in the chain becomes high-ohmic?
 - the rest of the chain would be disabled
 - mitigate problem by connecting chips in parallel
 - \rightarrow SLDO regulators need to be able to shunt the extra current
 - \rightarrow total voltage drop over the module must not exceed limits for safe operation
 - ightarrow thermal management of the module must be able to handle the extra power





WHAT IF?

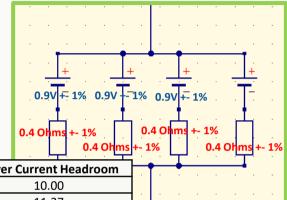
- a chip in the chain becomes high-ohmic?
 - the rest of the chain would be disabled
 - mitigate problem by connecting chips in parallel
 - \rightarrow SLDO regulators need to be able to shunt the extra current
 - \rightarrow total voltage drop over the module must not exceed limits for safe operation
 - ightarrow thermal management of the module must be able to handle the extra power



OPERATING CHIP IN PARALLEL AGAIN...

- the FE chips on a module are operated in parallel:
 - ightarrow single sensor tile, DC coupled: same ground potential required
 - \rightarrow current distribution becomes a challenge
 - ightarrow voltage drop on all regulators is the same
 - \rightarrow offset voltage and slope determined by external resistors: small differences O(1%) expected
 - ightarrow not every FE gets exactly 25% of the total current
 - ightarrow hit-rate can spike significantly: increase load current in single regulators
 - ightarrow compensate by supplying more current than nominally required: shunt current overhead
 - \rightarrow how much?

higher offset: lower current through resistor higher resistor: lower current through resistor


worst case:

→ downwards fluctuation for both offset and slope in all other chips (Chips 1, 2, 3)
 → upwards fluctuation for both offset and slope in one chip (Chip 4)
 → Chip 4 gets significantly smaller current

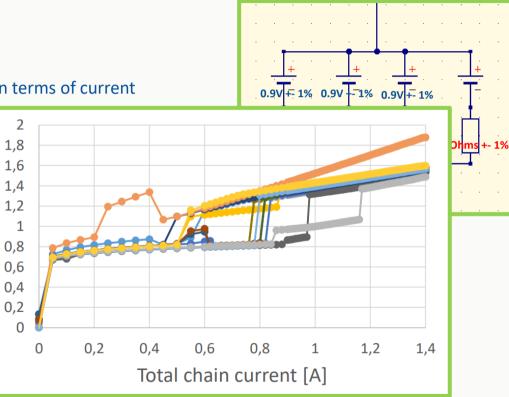
- worst case scenario for a quad chip module:
 - 10% shunt current headroom supplied
 - 1% variation in offset and slope: 5% difference in terms of current
 - half of the safety we have

	Slope [Ohms]	Offset resistor [kOhms]	Offset [V]	Serial Current [A]	Voltage Drop [V]	Required Current	Leftover Current Headroom	
Module	0.10		0.90	6.00	1.49	5.45	10.00	
FE 1	0.39	445.50	0.88	1.52	1.49	1.36	11.37	
FE 2	0.39	445.50	0.88	1.52	1.49	1.36	11.37	
FE 3	0.39	445.50	0.88	1.52	1.49	1.36	11.37	
FE 4	0.41	454.50	0.92	1.44	1.49	1.36	5.90	
Target	0.40	450.00		0.05				

required current depends on hit-rate

- hit-rate can only be roughly estimated from simulation
- variations of up to 10% seen between simulation and measurement in current detector

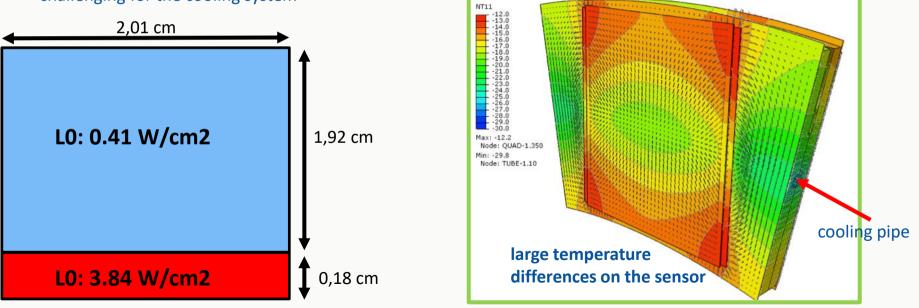
1% variation in offset and slope in combination with a 10% variation in hit-rate leaves almost no headroom



AN EXAMPLE

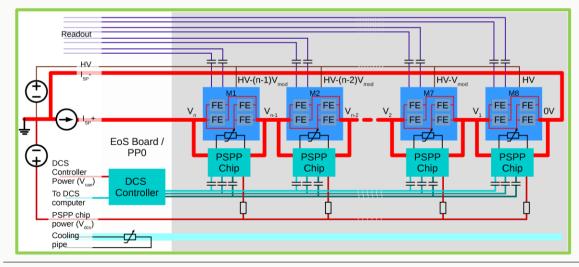
- worst case scenario for a quad chip module:
 - 10% shunt current headroom supplied
 - 1% variation in offset and slope: 5% difference in terms of current
 - half of the safety we have

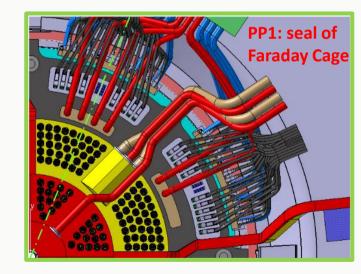
	Slope [Ohms]	Offset resistor [kOhms]	Offset [V]	Serial Currer
Module	0.10		0.90	6.00
FE 1	0.40	445.50	0.89	1.52
FE 2	0.40	445.50	0.89	1.52
FE 3	0.40	445.50	0.89	1.52
FE 4	0.40	454.50	0.91	1.44
Target	0.40	450.00		0.05


required current depends on hit-rate
hit-rate can only be roughly estimated from sim
variations of up to 10% seen between simulatic
1% variation in offset and slope in combination

VIN [V]

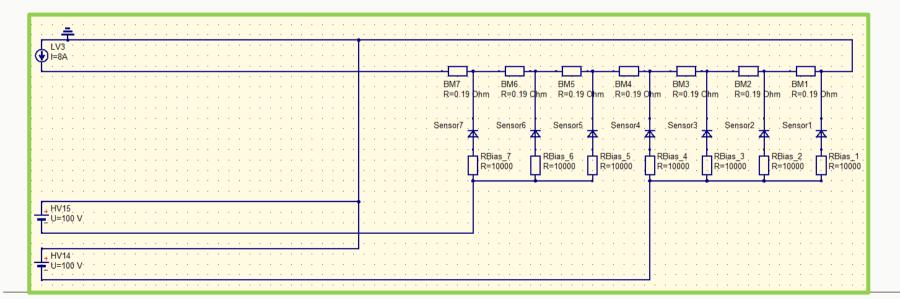
- significant fraction of total module power is dissipated on the chip periphery
 - almost 40% of the total power dissipated in less than 10% of the chip area
 - challenging for the cooling system

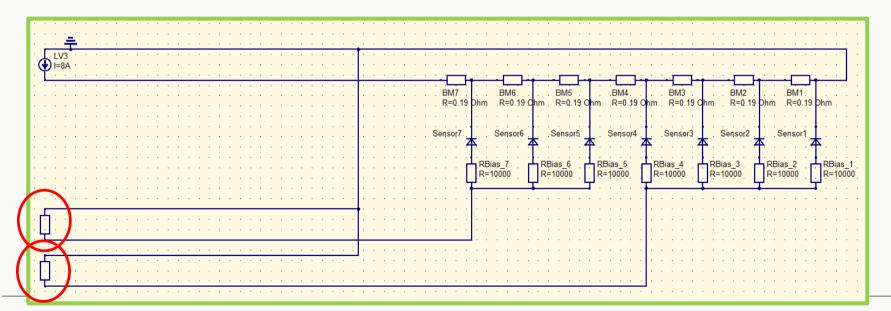




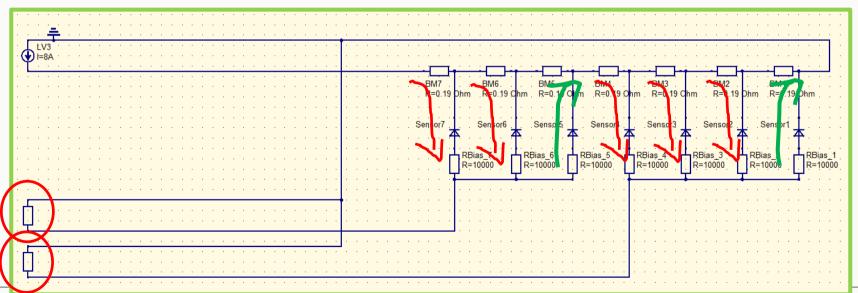
HIGH VOLTAGE DISTRIBUTION ISSUES

- we can not put enough cables into the detector to provide an individual HV line for each sensor
 - parallel distribution of sensor bias voltage to a subset or all modules in a serial powering chain
 - HV referenced to local module ground different effective bias voltage on every single sensor
 - long chains with 3D sensors not desirable

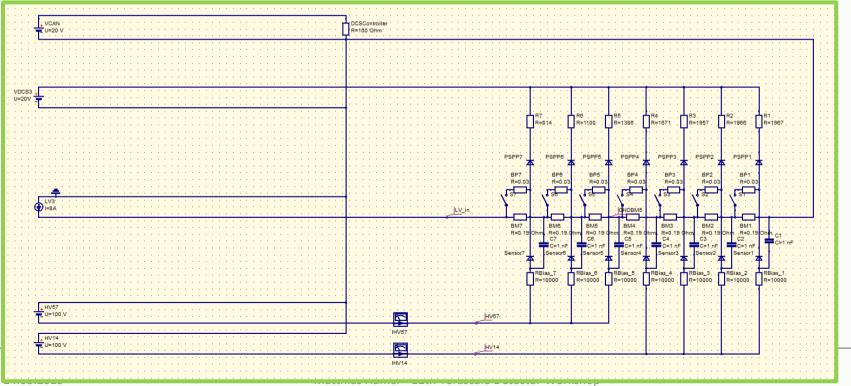

 \rightarrow depletion voltage as high as 10 V, breakdown voltage as low as 20V



- our grounding and shielding rules require us to tie the return lines of all power supplies to each other in the detector
 - in combination with our current power supplies, this generates a potential problem
 - HV power supplies act as high-ohmic resistors when switched off

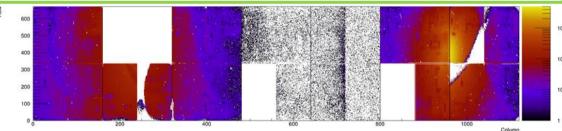


- our grounding and shielding rules require us to tie the return lines of all power supplies to each other in the detector
 - in combination with our current power supplies, this generates a potential problem
 - HV power supplies act as high-ohmic resistors when switched off


- our grounding and shielding rules require us to tie the return lines of all power supplies to each other in the detector
 - in combination with our current power supplies, this generates a potential problem
 - HV power supplies act as high-ohmic resistors when switched off
 - LV on \rightarrow small effective bias on each sensor \rightarrow return path through modules has lower resistance than HV PSU

OTHER SYSTEM ASPECTS

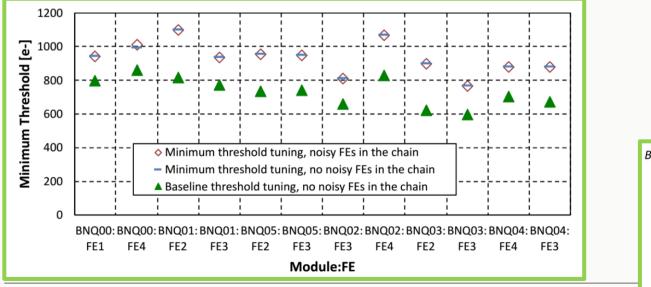
- a similar effect with the PSPP chips
 - our current LV power supplies are shorted when switched off; VDCS generates a negative voltage drop on FE chips

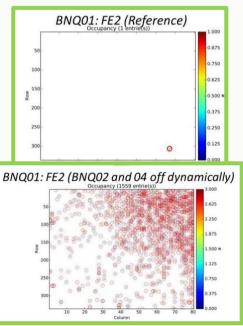


22 22

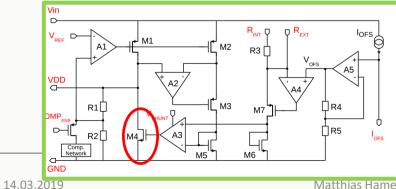
SERIAL POWERING IN ACTION

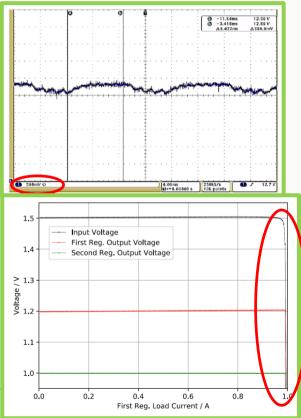
- several prototypes have been built by now
 - proof of principle at Bonn some time ago
 - prototype with realistic services, power supplies, local supports at CERN
 - long serial powering chain (13 modules) in Liverpool




simultaneous source scan with full prototype

- effects of transients in the LV line
 - noise pickup
 - with FE-I4 modules, oscillations can be triggered by overloading the SLDO regulator (noisy module)
 - effect on remaining modules was tested: low to no effect




24

UPGRADES FOR SERIAL POWERING

- protection mechanisms for front-ends required:
 - large transients can be dangerous for modules
- FE chips for ATLAS and CMS upgrades will have two protection mechanisms:
 - overvoltage protection
 - \rightarrow simply voltage clamp (2V) in parallel to regulator
 - under-shunt-current protection
 - → shunt current is sensed and output voltage of regulator is lowered if this shunt current is too small

- Serial Powering is Standard Solution for the ATLAS and CMS Pixel Detector Upgrades
 - lower losses on powering cables
 - less material in the detector
 - not DC-DC converters in the detector
- Serial Powering comes with several challenges:
 - parallel powering of front-end chips on modules
 - distribution of high voltage to sensors
 - safe operation of chain in case of noisy front-ends
 - thermal management of the modules
 - right choice of power supplies