
Working with the USB Stick

• contains all needed programs, vhdl code and documentation

• copy terascale-DWS folder into home (all future paths are relative to this folder)

• open terminal and type df
• /media/fpga/12345… should be displayed

• copy string after …fpga/

• open terascale-DWS/setup.py

• paste string between // at TS_INSTALL_DIR
• export TS_INSTALL_DIR=/media/fpga/12345…/ubuntu_16

• go into terascale-DWS folder and type source setup.py

1



VHDL WORKSHOP
Philipp Horn

2



Structure

• Introduction

• Board

• Setup of every .vhd File

• First Example

• Starting a Simulation

• First Exercise

• Applying Design to Hardware

• Designing a Project

3



Introduction
• VHDL

• Very High Speed Integrated Circuit Hardware Description Language

• describes the operation of a logical circuit (e.g. FPGA)

• concurrent system (unlike procedural computing languages such as C)

• one .vhd text file = one module/entity (piece of hardware) containing
• interface to outer world (e.g. LEDs, switches, ...)

• functionality (how input is handled and connected to output) 

• simulation program is used to test the logic design (modelsim)

• synthesis program translates text files to “gates and wires” that are mapped on the FPGA

• Quartus provides these programs, a complicated GUI and a lot more

• we will use hdlmake, a powerful tool to manage HDL code and write synthesis and simulation Makefiles

4



Board

ON/OFF switch

UART interface
(serial communication
with computer)

FPGA

LEDs, display,
switches and buttons

5

USB connection with
computer to load FPGA



Setup of every .vhd File

• green: comments started with  --

• blue: keywords for VHDL syntax

• black: arbitrary identifiers

• red: library
• Implementing data type std_logic

• has 9 possible values (most important: ‘0’, ‘1’,)

• single quotation mark is important

• Port:
• Definition of interface

• Architecture:
• Implementation of functionality

6

library IEEE;
use IEEE.std_logic_1164.all;
-- additional libraries are included here

entity entity_label is
port (

-- input and output are defined here
);
end entity_label;

architecture arch_label of entity_label is
-- internal signals are declared here
begin
-- functionality of the module is described here
end arch_label;



First Example – NAND Gate
• Ports:

• define two input and one 
output signals

• possible to give default value

7

library IEEE;
use IEEE.std_logic_1164.all;

entity example is
port (

input1 : in std_logic;
input2 : in std_logic;
output : out std_logic := '0';

);
end entity;

architecture arch of example is
signal internal : std_logic := '0';

begin
internal <= input1 and input2;
output <= not internal;

end arch;

• Architecture:
• declare one internal signal

• Assigning values to signals 
and output ports

• order is not important

entity example

internal
output

input1

input2
synthesis



Starting a Simulation

• test logic design using simulation models (test bench)

• they control input ports and can check output ports

• test benches are provided for this workshop

• procedure for every simulation:
• go to firmware/sim/modelsim/example

• type hdlmake (uses Manifest.py files to collect necessary 
files to setup simulation and writes a Makefile)

• type make

8

library IEEE;
use IEEE.std_logic_1164.all;

entity example is
port (

input1 : in std_logic;
input2 : in std_logic;
output : out std_logic := '0'

);
end entity;

architecture arch of example is
signal internal : std_logic := '0';

begin
internal <= input1 and input2;
output <= not internal;

end arch;



1. Exercise – Logic Gates

• open firmware/modules/gates/gates.vhd with a text editor

• implement following functionality:
• switch 0, 1 and 2 are on  LED 0 is on

• at least two of the switches 0, 1 and 2 are on  LED 1 is on

• switch 2 is on and button 0 is not pressed  LED 2 is on

• simulation in firmware/sim/modelsim/gates

• use parenthesis to control priority:

9

architecture arch of example is
begin

output <= not (input1 or input2);
end arch;

• possible logic gates:

not, and, or, nand
nor, xor, xnor



Applying the Design to Hardware

• go to firmware/syn/de0_quartus_gates

• pinout.tcl
• script, which maps ports to pins of FPGA

• these pins are connected to other components of the board

• type hdlmake (writes Makefile)

• type make

• demo.sof is generated

• regenerate file:
• type make clean

• type make

set_location_assignment PIN_H2 -to btn0_i
set_location_assignment PIN_J6 -to sw0_i
set_location_assignment PIN_H5 -to sw1_i
set_location_assignment PIN_H6 -to sw2_i

10



Applying the Design to Hardware

• Quartus Programmer uploads 
.sof files to the FPGA
• turn board on

• type quartus_pgmw

• hardware set to USB-Blaster

• click Add File …

• choose demo.sof

• click Start

• after regenerate:
• double-click and choose file

• this should be ticked
11



Data Processing

• ATLAS calorimeter at CERN measures energy of particles

• interaction between particle and calorimeter generates 
electric pulse with a amplitude corresponding to energy

• analog pulse is digitized

• ADC samples are filtered to reduce noise

• identify maximum to calculate energy of particle

• 40 MHz data rate on 182,468 readout channels

 fast concurrent system needed

12



Designing a Project – Data Processing

• project is divided in several entities/modules inside the “top” entity

• each module will be developed and simulated separately
• lohi_detect: detects rising edge of button and generates start signal

• filter: process data stream upon receiving start signal

• max_find: detect maximum value

• ssd: prepare value for seven segment display

lohi_detect

filter max_find ssd

Data (uart)

Button

Display

Start

top entity

13



Process
• operates procedural and are preceded by event control

• process is executed every time a signal in sensitivity list changes

• multiple assignments of same signal possible
• signal adopts value of final assignment

• if condition similar to procedural computing languages

14

process_label: process(sensitivity list)
begin

-- sequential statements
end process process_label;

if cond1 then
-- sequential statements
elsif cond2 then
-- sequential statements
else
-- sequential statements
end if;

• usually process is used with a clock (clk)
• signal, which alternates between ‘0’ and ‘1’ with a fixed frequency

• sequential statements of the left process are always executes, when 
the clock switches from ‘0’ to ‘1’ 

process_label: process(clk)
begin
if rising_edge(clk) then
-- sequential statements
end if;
end process process_label;



Process - Example
• value of signal inside a process is adopted at the end of the process

• inside of process:
• internal1 is asserted one clock cycles after input1

• output1 is asserted two clock cycles after input1

• outside of process:
• internal2 and output2 are asserted at the same time as input2

15

entity example2 is
port (
clk : in std_logic;
input1  : in std_logic;
input2  : in std_logic;
output1 : out std_logic := '0';
output2 : out std_logic := '0'

);
end entity;

architecture arch of example2 is
signal internal1 : std_logic := '0';
signal internal2 : std_logic := '0';

begin

process_label: process(clk)
begin
if rising_edge(clk) then
internal1 <= input1;
output1 <= internal1;

end if;
end process process_label;

internal2 <= input2;
output2 <= internal2;

end arch;



1. Module LoHi Detect

• open firmware/modules/lohi_detect/lohi_detect.vhd

• implement following functionality:
• synchronize input sig_i

• sig_o asserts for a single clock cycle after a rising edge of sig_i

• simulation in firmware/sim/modelsim/lohi_detect

• hint: internal signal reg is needed

• process statement with clock:

16

architecture arch of lohi_detect is
signal reg : std_logic := '0';
-- declare additional signals

begin

process_label: process(clk)
begin

if rising_edge(clk) then
-- write your code here
end if;

end process process_label;

-- and here

end arch;



Additional Data Types

• std_logic_vector:
• array of std_logics

• default value with others to be length independent

• unsigned / signed:
• similar to std_logic_vector

• mathematical operations are possible  +  - *  /  **

• needs additional library IEEE.numeric_std

• integer / natural / positive:
• natural contains zero

• use range to limit number of bits (default = 32)

• boolean
• possible values: true and false

• used with any of the relational operators <  >  <=  >=  =  /=

signal A1 : std_logic_vector(6 downto 0) := (others => '0');

signal C1 : integer := -2;
signal C2 : natural := 0;
signal C3 : integer range 5 to 100 := 7;

17

if A1 = "0100110" then
if C1 <= B2 then

signal B1 : unsigned(2 downto 0) := "110"; -- equals  6 =  4 + 2
signal B2 : signed(2 downto 0) := "110"; -- equals -2 = -4 + 2

signal D1 : boolean := false;



Generics

• optional possibility to passes specific information to the entity

• common usage: define number of bits for port vectors

• change default value of bit_width to change length of data_i and data_o

• vector with 16 bit has range (15 downto 0)
•  bit_width-1

18

entity max_find is
generic (

bit_width : positive := 16
);
port (

data_i : in unsigned(bit_width-1 downto 0);
data_o : out unsigned(bit_width-1 downto 0) := (others => '0')

);
end max_find;



2. Module “Max Find”

• open firmware/modules/max_find/max_find.vhd

• implement following functionality:
• data_o is maximum value of all previous data_i

• start_i resets this maximum (has priority)

• simulation in firmware/sim/modelsim/max_find

• internal signal declaration necessary, because reading of output not possible:

• if condition:

signal B : unsigned(bit_width-1 downto 0) := (others => '0');

19

if cond1 then
-- sequential statements
elsif cond2 then
-- sequential statements
else
-- sequential statements
end if;



Data Type Conversion

• Between unsigned/signed and std_logic_vector:
• signals need to have the same width

• Between unsigned/signed and integer:
• specification of the intended bit width from integer required

• not possible to convert directly between integer and std_logic_vector
• first convert to signed or unsigned

A_std <= std_logic_vector(B_sig);
A_std <= std_logic_vector(C_uns);

B_sig <= signed(A_std);
C_uns <= unsigned(A_std);

D_int <= to_integer(B_sig);
D_int <= to_integer(C_uns);

B_sig <= to_signed(D_int,bit_width);
C_uns <= to_unsigned(D_int,bit_width);

20



Type Declaration

• examples of predefined types:
• Boolean is an enumerate of length two

• std_logic_vector is array of std_logic with undefined length

• define a matrix:
• written between architecture and begin

• type matrix_t is array of std_logic_vectors with undefined length

• signal matrix_s is array of std_logic_vectors with length 4

21

type boolean is (false, true);
type std_logic_vector is array (natural range <>) of std_logic;

architecture arch of entity_label is
type matrix_t is array (natural range <>) of std_logic_vector(6 downto 0);
signal matrix_s : matrix_t(3 downto 0);

begin



Wiener Filter

• output yn is a weighted sum of the most recent 6 input values (xn, xn-1, …)

• constants (c1, c2, …) are calibrated on input and desired output

• constants are usually not integers multiply them by a common factor ( x 2k)

• result has to be divided by that common factor (cut lower k bits)

• example: constants multiplied by 4 and lower 2 bits of result cut

yn = c1 * xn + c2 * xn-1 + c3 * xn-2 + c4 * xn-3 + c5 * xn-4 + c6 * xn-5

22

filter

c1 = 0.25
c2 = 0.5

c1 = 1
c2 = 2

yn = 12 (“1100”) yn = 3 (“11”)* 4 / 4filter

yn = c1 * 6 + c2 * 3



3. Module “filter”

• open firmware/modules/filter/filter.vhd with a text editor

• implement following functionality:
• data_o (yn) is a weighted sum of the most recent 6 data_i values (xn, xn-1, …)

• use process to buffer xn-1, xn-2, …

• convert input to integer and result to unsigned data_uns

• simulation in firmware/sim/modelsim/filter

• usage of type definition and loop possible

D_int <= to_integer(C_uns);
C_uns <= to_unsigned(D_int,bit_width);

23

• type conversion:

yn = c1 * xn + c2 * xn-1 + c3 * xn-2 + c4 * xn-3 + c5 * xn-4 + c6 * xn-5



Conditional Signal Assignment

• outside of processes

• when / else:
• value is assigned to output1 based on conditions

• more general method (any boolean expression possible)

• counterpart to “if condition” in process

• input1/2/3 can be signals or values

• cond1 and cond2 are bools

• with / select:
• value is assigned to output2 based on value of internal

• rather specific method (equality checking)

• A, B, C, choise1 and choice2 can be signals or values

• value is assigned to output2 based on possible values of selection
24

output1 <= input1 when cond1 else
input2 when cond2 else
input3;

with internal select
output2 <= input1 when choice1,

input2 when choice2,
input3 when others;



“single disp”

• firmware/modules/ssd/single_disp.vhd shown on the right

• example for conditional signal assignment

• converts the single digit number_i (0-9) to the seven 
segment display vector seg_o
• if number_i = 8  all bits of seg_o needs to be active

• number_i > 9 results only in the assertion of the middle segment 

• hardware might require active low signals
• ‘0’ means light is on

• boolean decides if the signal is inverted

25

entity single_disp is
generic(

invert : boolean := false
);
port(

number_i : in unsigned(3 downto 0);
seg_o : out std_logic_vector(6 downto 0)

);
end entity;

architecture arch of single_disp is
signal seg_s : std_logic_vector(6 downto 0);

begin

with number_i select
seg_s <= "0111111" when "0000", -- 0

"0000110" when "0001", -- 1
"1011011" when "0010", -- 2
"1001111" when "0011", -- 3
"1100110" when "0100", -- 4
"1101101" when "0101", -- 5
"1111101" when "0110", -- 6
"0000111" when "0111", -- 7
"1111111" when "1000", -- 8
"1101111" when "1001", -- 9
"1000000" when others;

seg_o <= not seg_s when invert else
seg_s;

end arch;



Mapping of entities

• reuse an entity as a module in a different entity

entity single_disp is
generic(

invert : boolean := false
);
port(

number_i : in unsigned(3 downto 0);
seg_o : out std_logic_vector(6 downto 0)

);
end entity;

• single_disp entity (generic and ports on the top) will be 
needed for next module seconds (architecture on the left)

• work denotes the current working library

• generics and ports from the entity on the left

• connected values and signals on the right

• generics can be omitted (the default value would be used)

• widths need to align (shorten internal)
26

architecture arch of seconds is
signal internal : std_logic_vector(7 downto 0);

begin

map_label: entity work.single_disp
generic map(

invert => true
)
port map(

number_i => "1000",
seg_o => internal(6 downto 0)

);

end arch;



2. Exercise – Second Counter

• open firmware/modules/ssd/seconds.vhd with a text editor

• implement following functionality:
• counter is increased with every rising edge of clock clk

• when counter reaches counter_max one second passed

• for simulation counter_max is set to 5

• output seconds sec to seven segment display ss_d1_o

• after nine seconds: start again at zero

• simulation in firmware/sim/modelsim/seconds

• synthesis in firmware/syn/de0_quartus_seconds

• mapping:

27

architecture arch of seconds is
begin

map_label: entity work.single_disp
generic map(

invert => invert
)
port map(

number_i => B,
seg_o => C

);

end arch;



• if generate: conditional creating of components

• for generate: repeating a group of identical components

• example: assign first 5 bits of every std_logic_vector of matrix_s

architecture arch of entity_label is
signal internal : std_logic_vector(4 downto 0) := (others => '0');
type matrix_t is array (natural range <>) of std_logic_vector(6 downto 0);
signal matrix_s : matrix_t(2 downto 0);

begin
matrix_s(0)(4 downto 0) <= internal;
matrix_s(1)(4 downto 0) <= internal;
matrix_s(2)(4 downto 0) <= internal;

end arch;

Generate

28

• combined to generate statement:

generate_label: for i in 2 downto 0 generate
matrix_s(i)(4 downto 0) <= internal;

end generate;

generate_label: if cond1 generate
output <= input;

end generate;



4. Module “ssd”

• open firmware/modules/ssd/ssd.vhd with a text editor

• implement following functionality:
• four digit number input data_i

• use division / and modulo mod to separate digits

• save all results in matrices quotient and remainder

• route separate digits to single_disp to receive ss_ds

• output four std_logic_vectors (seven segment display)

• simulation in firmware/sim/modelsim/ssd

• generate: generate_label: for i in 3 downto 0 generate
matrix_s(i)(4 downto 0) <= internal;

end generate;

29



5. Module “top”

• open firmware/modules/top/top.vhd with a text editor

• implement following functionality
• entity data_uart provides data (in simulation only a constant set)

• map all 4 modules into this entity and use internal signals to connect them

• simulation in firmware/sim/modelsim/top 

• synthesis in firmware/syn/de0_quartus_top

30

• solution of previous modules:
• firmware/modules/.top/

• copy and overwrite self written .vhd file



Sending data to FPGA

• go into terascale-DWS folder

• type python/slowCtrl.py

• choose displayed input file (type 1)

• choose displayed UART port (type 5)

• send pulses by typing 6

31



Signal Tap

• powerful debugging tool, which 
enables to look inside FPGA
• type quartus_stpw

• open file stp1.stp

• set hardware to USB Blaster

• trigger is already set to rising 
edge of button

• arm trigger

• push button on board

32



Writing a Test Bench

• test bench (tb) = entity used for simulation
• example: seconds_tb on the right

• generics definition but without port
• example: set counter_max = 5 to shorten simulation

• maps unit under test (uut) with internal signals

• output is not connected (open)

• clock (clk) generation via process

• wait for statement not synthesizable

33

library IEEE;
use IEEE.std_logic_1164.all;

entity seconds_tb is
generic(

counter_max : positive := 5;
invert      : boolean := true

);
end seconds_tb;

architecture tb of seconds_tb is
signal clk : std_logic := '0';

begin
uut: entity work.seconds
generic map(

counter_max => counter_max,
invert      => invert

)
port map(

clk => clk,
ss_d1_o => open

);

clk_proc: process
begin

clk <= '0'; -- clock cycle is 20 ns
wait for 10 ns;
clk <= '1';
wait for 10 ns;

end process clk_proc;
end architecture;



Input generation

• additional possibilities written in test bench architecture

• asynchronous signal:
• from lohi_detect

• generate synchronous counter

• use case statement to assign input
• from example1

• signal configuration done in modelsim GUI (display 
format, names and colors) and saved in wave.do

34

sim_proc: process
begin

wait for 42 ns;
sig_i <= '1';
wait for 34 ns;
sig_i <= '0';
wait;

end process sim_proc;

count_proc: process(clk)
begin
if rising_edge(clk) then
counter <= counter + 1;

end if;
end process count_proc;

sim_proc: process(clk)
begin
if rising_edge(clk) then
case counter is
when 1 =>
input1 <= '1';
input2 <= '0';

when 2 =>
input1 <= '0';
input2 <= '1';

when 3 =>
input1 <= '1';
input2 <= '1';

when others =>
input1 <= '0';
input2 <= '0';

end case;
end if;

end process sim_proc;



hdlmake

• file firmware/sim/modelsim/top/Manifest.py is starting point for top simulation

• sim_post_cmd is a command that is issued after
the simulation process has finished

• modules points to other Manifest.py files in
local folders

• add needed files for simulation

35

action = "simulation"
sim_tool = "modelsim"
sim_top = "top_tb"

sim_post_cmd = "vsim -do wave.do -i top_tb"

modules = {
"local" : [ "../../_testbench/top_tb" ],

}
files = [

"top_tb.vhd",
]
modules = {

"local" : [ "../../../modules/top" ],
}



Reset signal

• input to initialize signals to a predetermined state

• synchronous: reset is checked at the rising edge of clock

• asynchronous: reset in sensitivity list of process

36

entity test is
port (

clk : in std_logic;
reset : in std_logic;
sig_i : in std_logic;
sig_o : out std_logic

);
end entity;

test_proc: process(clk)
begin

if rising_edge(clk) then
if reset = '1' then

sig_o <= '0';
else

sig_o <= sig_i;
end if;

end if;
end process;

test_proc: process(clk, reset)
begin

if reset = '1' then
sig_o <= '0';

elsif rising_edge(clk) then
sig_o <= sig_i;

end if;
end process;



Other Concepts

• package = collection of declarations
• written in separate file

• can be called and used in an entity 

• function = describe an algorithm
• one output and multiple inputs

• attributes = parameters of signal

37

package utils is
constant six : positive := 6;
type matrix_t is array (natural range <>) of

std_logic_vector(6 downto 0);
function div(a : natural; b : positive) return natural;

end package;

package body utils is
function div(a : natural; b : positive) return natural is
begin

return a / b;
end function;

end package body;

use work.utils.all;

entity test is
generic (
gen   : natural := 12;

port (
data_i : in matrix_t(con downto 0);
data_o : out std_logic_vector(div(gen,con) downto 0)

);

signal A : std_logic_vector(7 downto 0);
A'left -- equals 7
A'range -- equals 7 downto 0
A'length -- equals 8

label_gen: for i in A'range generate



Binary Addition

• open firmware/modules/bin_add/bin_add.vhd

• implement following functionality
• assume std_logic_vector input to be unsigned numbers 

• use for generate to connect single bits via logic gates

• internal carry signal needed for addition

• use temporary signal c_temp for result and assign output with next clock cycle

• simulation in firmware/sim/modelsim/bin_add

38

a =
b =

carry =

c =



Binary Multiplication

• open firmware/modules/bin_mult/bin_mult.vhd with a text editor

• implement following functionality
• fill a into row of matrix_s if corresponding bit of b is asserted

• use bin_add to keep adding row of matrix_s to c_temp

• simulation in firmware/sim/modelsim/bin_mult

39

a  x b =
matrix_s =

c =


