FEI Performance, $B^+ o ho^0 \mu^+ u_\mu$, $B^+ o au^+ u_ au$

Nadia Toutounji

The University of Sydney

 V_{xb} sub-group meeting August 3rd, 2018

回 と く ヨ と く ヨ と

- Primary aim to compare the performance of the specific and generic FEI in the context of charmless SL decays. $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ chosen as a working example
- Key performance indicator: number of correctly reconstructed $\Upsilon(4S)$ candidates
- As mentioned in previous updates, have been observing a lower performance of the specific FEI compared with the generic for this decay mode
- Main focus currently is trying to investigate this behaviour

コン・キョン・キョン ヨ

The specific FEI was trained on the following MC (all BGx1):

- 90M generic mixed background events: MC7 phase III.
- 90M generic charged background events: MC7 phase III.
- 100M $\Upsilon(4S) \rightarrow B^+_{sig}B^-$ events, $B^+_{sig} \rightarrow \rho^0 \mu^+ \nu_\mu$: Generated myself.
- 4M $B^+ \rightarrow$ ulnu charged background events: MC7 phase III.
- 3M $B^0 \rightarrow$ ulnu mixed background events: MC7 phase III.

The generic FEI was trained (by *T. Keck*) on the following MC (all BGx1):

- 90M generic mixed background events: MC7 phase III.
- 90M generic charged background events: MC7 phase III.

▲□ → ▲ 目 → ▲ 目 → ○ ○ ○

Applying the FEI: Signal $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ Sample

- Applied both specific and generic FEI to a $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ skim on MC7 phase III $B^+ \rightarrow ulnu$. 159579 events (BGx1)
- Relevant *B*_{sig} selections included:

• $0.5 < M_{\pi\pi} < 1.4 \text{ GeV}$ • $-1.0 < \text{Corrected } \Delta E < 2.0 \text{ GeV}$ • 5.0 < Corrected Mbc < 5.3 GeV + PID cuts, cleaning ROE...
 (see back-up slides for details)

 V_{xb} sub-group meeting, 03.08.2018

Best candidate selection on $\Upsilon(4S)$ using B_{tag} signal probability \rightarrow one per event

Performance Indicators

 $Efficiency = \frac{\# \text{ events with reconstructed candidates}}{\# \text{ total events}}$ $Purity = \frac{\# \text{ events with correct* candidates}}{\# \text{ events with reconstructed candidates}} \qquad [*isSignal == 1]$ Reconstruction Efficiency (correct) = $\frac{\# \text{ events with correct* candidates}}{\# \text{ total events}}$

N. Toutounii

Comparing the FEI: Signal $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ Sample

Generic FEI

* isSignal == 1	B _{sig}	B _{had}	$\Upsilon(4S)_{had}$	B _{SL}	Ƴ(4S) <i>sL</i>	Ƴ(4S) _{all}				
N _{events}	159579	122981		36598		159579				
No. of reconstructed candidates	139842	272641	2925	1791048	22286	22875				
No. of correct* candidates	33709	2101	241	2435	387	614				
Efficiency			2.38%		60.9%	14.3%				
Purity			8.24%		1.74%	2.68%				
Reconstruction Efficiency (correct)			0.196%		1.06%	0.385%				
Specific FEI										
* isSignal $== 1$	B _{sig}	B _{had}	Ƴ(4S) _{had}	B _{SL}	Ƴ(4S) <i>sL</i>	Ƴ(4S) _{all}				
N _{events}	159579	122981		36598		159579				
No. of reconstructed candidates	139842	78004	4477	1720160	36569	36990				
No. of correct* candidates	33709	865	199	673	354	529				
Efficiency			3.64%		99.9%	23.2%				
Purity			4.44%		0.968%	1.43%				
Reconstruction Efficiency (correct)			0.162%		0.967%	0.331%				

Shown previously at F2F meeting. Generic FEI outperforming specific FEI \rightarrow why?

ROC Curves: Signal $B^+ ightarrow ho^0 \mu^+ u_\mu$ Sample, Hadronic Tag

Generic FEI consistently outperforming specific at all values of SignalProbability for hadronic tags

events with correct* candidates Reconstruction Efficiency (correct) = total events V_{xb} sub-group meeting, 03.08.2018 N. Toutounii

ROC Curves: Signal $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ Sample, SL Tag

Specific vs. Generic FEI ROC Curves for Y(4S) Built From SL Tags

Specific FEI reaches generic performance for SL tags only at high purities Reconstruction Efficiency (correct) = # events with correct* candidates # total events

ROC Curves: Signal $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ Sample

Alternative ROC curves displaying efficiency vs. purity show similar trends.

- Given low observed specific FEI performance for $B^+ \rightarrow \rho^0 \mu^+ \nu_{\mu}$ with Belle II MC, aim was to replicate only other known comparison of specific and generic FEI on Belle II MC \rightarrow T. Keck's Masters thesis
- $B^+ \to \tau^+ \nu_{\tau}, \ \tau^+ \to \mu^+ \nu_{\mu} \bar{\nu_{\tau}}$. Analysis with **no beam background**
- Under-trained specific FEI (20M signal events instead of recommended order of 100M) still out-performed generic for both hadronic and SL tags
- Repeated existing comparative study with some caveats: FElv4 vs. FElv3 etc. See back-up slides for details

레이 소문이 소문이 모님

FEI Performance for $B^+ \rightarrow \tau^+ \nu_{\tau}$

Generic FEI

* isSignal == 1	B _{sig}	B _{had}	$\Upsilon(4S)_{had}$	B _{SL}	Ƴ(4S) _{SL}	Ƴ(4S) _{all}				
N _{events}	90000	67139		22861		90000				
No. of reconstructed candidates	175367	28796	2994	539147	16740	17903				
No. of signal candidates	63928	1807	542	2031	1090	1618				
Efficiency			4.46%		73.2%	19.9%				
Purity			18.1%		6.51%	9.04%				
Reconstruction Efficiency (correct)			0.807%		4.77%	1.80%				
Specific FEI										
* isSignal == 1	B _{sig}	B _{had}	$\Upsilon(4S)_{had}$	B _{SL}	Ƴ(4S) <i>sL</i>	$\Upsilon(4S)_{all}$				
N _{events}	90000	6	67139 2		861	90000				
No. of reconstructed candidates	175367	19675	3430	511491	19710	20934				
No. of correct* candidates	63928	1576	488	1504	1096	1525				
Efficiency			5.11%		86.2%	23.3%				
Purity			14.2%		5.56%	7.28%				
Reconstruction Efficiency (correct)			0.727%		4.79%	1.69%				

ROC Curves: Signal $B^+ ightarrow au^+ u_ au$ Sample, Hadronic Tag

My Analysis

T. Keck, IEKP-KA-2014-18

- No good agreement between analyses for hadronic tags. Specific FEI does not reach generic performance
- Efficiencies observed in my own analysis significantly higher than T. Keck's, at all purities

Reconstruction Efficiency (correct) = $\frac{\# \text{ events with correct}^* \text{ candidates}}{\# \text{ total events}}$

ROC Curves: Signal $B^+ ightarrow au^+ u_ au$ Sample, SL Tag

My Analysis

T. Keck, IEKP-KA-2014-18

- Specific FEI outperforms generic for SL tags in both analyses, despite being under-trained
- Again, much higher efficiencies observed in my analysis than T. Keck's, at all purities

Reconstruction Efficiency (correct) = $\frac{\# \text{ events with correct}^* \text{ candidates}}{\# \text{ total events}}$

ROC Curves: Signal $B^+ \rightarrow \tau^+ \nu_{\tau}$ Sample

Alternative ROC curves displaying efficiency vs. purity show similar trends

 $\mathsf{Efficiency} = \frac{\# \text{ events with reconstructed candidates}}{\# \text{ total events}}$

<**∂** > < ⊇ >

- ∢ ≣ →

Conclusions/Ongoing Work

- Specific FEI trained on recommended sample sizes for decay mode $B^+ \rightarrow \rho^0 \mu^+ \nu_\mu$ consistently under-performs compared with generic FEI
- Best respective performance when using SL tags, allowing specific FEI performance to reach generic only at high values of SignalProbability
- Even an under-trained specific FEI can outperform the generic for SL-tagged $B^+ \rightarrow \tau^+ \nu_{\tau}$, though this was not observed for hadronic tags \rightarrow does the specific FEI work better for some decay modes over others?
- Currently working on re-training the specific FEI for $B^+ \rightarrow \tau^+ \nu_{\tau}$ on the "recommended" sample size (100M signal events) to investigate potential improvement for hadronic channels

All suggestions are welcome!

- Initial skim to save computing time, max 12 tracks in event: nCleanedtracks \leq 12, where cleaned tracks have distances dr < 2 cm, |dz|< 4 cm
- Cut on number of allowed tracks from *B*_{sig}: Bextracut = nRemainingTracksInEvent ≥ 3,
- nRemainingTracksInEvent \leq 7 μ_{sig} cuts: muon identification
- probability muid > 0.5, track distances dr < 1 cm, |dz| < 2 cm

- π_{sig} cuts: pion identification probability piid > 0.5, track distances dr < 1 cm and |dz| < 2 cm, momentum 0.5 < useCMSFrame(p) < 2.8 GeV
- Cut on ρ_{sig}^0 mass: 0.5 < M < 1.4 GeV
- Cleaning RestOfEvent: 'dr < 2 and |dz| < 4', 'clusterE9E25 > 0.9, clusterTiming < 50, goodGamma == 1, trackMatchType==0'
- Cut on beam-constrained mass and energy difference, corrected with neutrino missing momentum for B_{sig} : -1.0 < sigDE < 2.0 GeV, 5.00 < sigMbc < 5.30 GeV
- Choosing only one candidate per event with highest B_{tag} sigProb for Υ(4S)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Back-up: $B^+ \rightarrow \tau^+ \nu_{\tau}$

FEI applied to $\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu_\tau}$ skim of MC7 BGx0 phase III signal $B^+ \rightarrow \tau^+ \nu_\tau$ sample, $N_{events} = 90000$ with following selections:

- My Analysis
 - FEIv4, (release-01-00-03)
 - Specific training:90M charged, 90M mixed, 20M signal $B^+ \rightarrow \tau^+ \nu_{\tau}$ Generic training: Unknown sample size used for BGx0 training. Either 50M or 90M each of charged and mixed
 - MC7 study, BGx0

- µ_{sig} cuts: muon identification probability muid > 0.6
- Clean ROE for $\Upsilon(4S)$: dr < 2 cm, |dz| < 4 cm
- nROETracks == 0 for $\Upsilon(4S)$ ROE
- Choosing only one candidate per event with highest B_{tag} sigProb for $\Upsilon(4S)$

T. Keck's Analysis

- FEIv3, (release-unknown (older))
- Specific training: 20M charged, 20M mixed, 20M signal $B^+ \rightarrow \tau^+ \nu_{\tau}$ Generic training: 50M charged, 50M mixed.
- MC production unknown, older than MC7, BGx0