

Jahresversammlung der deutschen Teilchenphysiker Physikzentrum Bad Honnef, 17. November 2018

Probing beyond the Standard Model with Flavor Physics

Matthias Neubert

PRISMA Cluster of Excellence Johannes Gutenberg University Mainz

Beyond the SM

- * Direct searches for new heavy particles at LHC have so far not led to a discovery
- * While naturalness remains main motivation for thinking about future energy-frontier machines, one observes a shift of focus on indirect **Increasing mass Previously expected** NP searches and Searches for region for Experimentally excluded heavy particles with new particles large couplings searches for light, exotic Decreasing coupling particles (dark photons, axions, ALPs, ...) Terra incognita **Searches for light**

particles with small couplings

Beyond the SM

- * No solution yet to hierarchy problem (SUSY ???)
- * No answers yet to other big questions:
 - Nature of Dark Matter?
 - Origin of matter-antimatter asymmetry?
 - Explanation of flavor puzzle?
 - Dark energy / cosmological constant and strong CP problems
- While the field waits for clues, remarkable things are happening in the flavor sector!

B-meson flavor anomalies: Violations of lepton universality ?

B-meson flavor anomalies

 Intriguing hints of anomalies in B decays entered stage starting in 2012 (R_D, R_{D*}; R_K, R_{K*}; P₅', ...)

$$\begin{split} R_{D^{(*)}} &= \frac{\Gamma(\bar{B} \to D^{(*)}\tau\bar{\nu})}{\Gamma(\bar{B} \to D^{(*)}\ell\bar{\nu})}; \quad \ell = e, \mu \\ R_{K^{(*)}} &= \frac{\Gamma(\bar{B} \to \bar{K}^{(*)}\mu^+\mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)}e^+e^-)} \end{split}$$

- * If true, they would be hugely important for the future development of high-energy particle physics at large!
- * In fact, their importance cannot be overstated ...

B-meson flavor anomalies

 ... as they would give a clear target for future searches at energy frontier!

New physics cannot be too far from here!

Flavor anomalies: RD & RD*

* A totally unexpected signal of new physics in tree-level, CKM-favored, semileptonic decays of B mesons:

Flavor anomalies: R_D & R_D*

Flavor anomalies: P5' etc.

- * Various hints of new physics in decays $\bar{B} \rightarrow K^* \ell^+ \ell^-$
- Being rare, loop-mediated FCNC processes, these are prime observables to probe BSM effects

Flavor anomalies: P5' etc.

- * Several angular observables measured as functions of q²
- Some, like P₅', are optimized to be insensitive to hadronic uncertainties: [Descotes-Genon, Matias, Ramon, Virto 2012]

M. Neubert — Probing beyond the SM with Flavor Physics

Flavor anomalies: R_K & R_K*

 Some scenarios explaining the anomalies in angular observables predicted a departure from unity in the ratios: [Altmannshofer, Gori, Pospelov, Yavin 2014]

$$R_{K^{(*)}} = \frac{\Gamma(\bar{B} \to \bar{K}^{(*)} \mu^+ \mu^-)}{\Gamma(\bar{B} \to \bar{K}^{(*)} e^+ e^-)}$$

 Quite spectacularly, such deviations were later observed at LHCb!

Flavor anomalies: R_K & R_K*

B-flavor anomalies: Analysis

- * Lots of reasons to be excited!
 - Two different sets of anomalies of very different taste
 - Several seen by more than one experiment
 - In case of $b \rightarrow s\ell^+\ell^-$ several observables deviate from SM predictions, and deviations appear to fit a simple pattern
- * All combined, the most compelling hints for physics beyond the SM we have seen so far

Who ordered that?

- * Unexpectedly large new-physics effect!
- * No apparent connection to big questions of our field!
- * Is it good for something else?

Model-independent analyses

* Effective weak Hamiltonian for $b \rightarrow s\ell^+\ell^-$ transitions, including both SM and NP effects:

$$\mathcal{H}_{\text{eff}}^{\text{NP}} = -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_{i,\ell} (C_i^{\ell} O_i^{\ell} + C_i^{\prime \,\ell} O_i^{\prime \,\ell}) + \text{h.c.}$$

with:

$$O_{9}^{\ell} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{9}^{\prime \ell} = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$$
$$O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), \qquad O_{10}^{\prime \ell} = (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$$

- * Excellent fits obtained with only two NP contributions!
- * Analogous Hamiltonian can be written for $b \to c \, \ell^- \bar{\nu}$

Model-independent analyses

* Global fits to data assuming NP for muons only, e.g.:

[Altmannshofer, Nies, Stangl, Straub 2017]

[see also: Capdevila, Crivelin, Descotes-Genon, Matias, Virto 2017; Hurth, Mahmoudi, Neshatpour 2016; Ciuchini, Coutinho, Fedele, Franco, Paul, Silvestrini, Valli 2017; ...]

Model-independent analyses

* Discriminating power of R_K and R_{K*}:

[D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 2017; Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi 2017]

M. Neubert — Probing beyond the SM with Flavor Physics

Model building

 Several (but not all) models aim at explaining all anomalies, sometimes along with (g-2)_μ (optimistic ^(ω))

[Bhattacharya, Datta, London, Shivashankara 2014; Alonso, Grinstein, Martin Camalich 2015; Greljo, Isidori, Marzocca 2015; Calibbi, Crivellin, Ota 2015; Bauer, MN 2015; Fajfer, Kosnik 2915; Barbieri, Isidori 2015; Das, Hati, Kumar, Mahajan 2016; Boucenna, Celis, Fuentes-Martin, Vicente, Virto 2016; Becirevic, Kosnik, Sumensari, Zukanovich Funchal 2016; Becirevic, Fajfer, Kosnic, Sumensari 2016; Hiller, Loose, Schoenwald 2016; Bhattacharya, Datta, Guevin, London, Watanabe 2016; Buttazzo, Greljo, Isidori, Marzocca 2016; Barbieri, Murphy, Senia 2016; Bordone, Isidori, Trifinopoulos 2017; Crivellin, Müller, Ota 2017; Megias, Quiros, Salas 2017; Cai, Gargalionis, Schmidt, Volkas 2017; ...]

- * R_D and R_{D*} require tree-level NP near TeV scale
- * Rare decays $b \rightarrow s\ell^+\ell^-$ (R_K, R_{K*}, P₅', ...) require suppressed NP contributions
- * If common origin: suppression either dynamically or by means of a symmetry

Model building

* New colorless bosons, e.g. Z' coupled to $(L_{\mu}-L_{\tau})$:

[Altmannshofer, Gori, Pospelov, Yavin 2014]

- Z' mass in low TeV range, heavy vector-like quarks ~ tens of TeV
- Can explain P₅' and predicted LFU violation in R_K and R_{K*}
- Tree-level contribution to Bmeson mixing is problematic

Scalar/vector leptoquarks, e.g.:

- Can explain both R_{D(*)} and R_{K(*)} at tree-level
- Very large hierarchy in coupling parameters (flavor symmetry?)
- Constraints from B mixing and B \rightarrow K^(*) $\nu\nu$, B \rightarrow K^(*) $\tau^+\tau^-$

Model building

 $\langle \phi \rangle$

* New colorless bosons, e.g. Z' coupled to $(L_{\mu}-L_{\tau})$:

[Altmannshofer, Gori, Pospelov, Yavin 2014]

- Z' mass in low TeV range, heavy vector-like quarks ~ tens of TeV
- Can explain P₅' and predicted LFU violation in R_K and R_{K*}
- Tree-level contribution to Bmeson mixing is problematic

M. Neubert — Probing beyond the SM with Flavor Physics

* Scalar SU(2)_L singlet LQ ($\doteq \tilde{b}_R$):

[Bauer, MN 2015; Cai, Gargalionis, Schmidt, Volkas 2017]

- Explains $R_{D(*)}$ at tree-level but $R_{K(*)}$ at one-loop level, like SM
- CKM-like hierarchy in coupling parameters

Emergence of a bigger picture?

- * Required new particles in low TeV range, precisely where we (now) expect a solution to the hierarchy problem!
- Leptoquarks can arise from GUTs, neutrino mass models, SUSY models, or as pNGBs
 Popov, White 2016
- E.g.: Composite Higgs models with partial fermion
 Compositeness:
 Buttazzo, Greljo, Isidori, Marzocca 2016; Barbieri, Murphy, Senia 2016; ...]
 - Address hierarchy and flavor problems at ~10 TeV, light scalar leptoquarks (~ TeV) as pNGBs
 - Interesting challenges for model building!

Emergence of a bigger picture?

- * Data may teach us an important lesson:
 - Complementarity of different fields (flavor was sometimes considered irrelevant in the LHC era ...)!
 - Intimate connection between flavor and high-p_T physics!
- * Imagine the LHC legacy:
 - Discovery of the Higgs boson (2012)
 - Discovery of lepton-flavor non-universality (2019)
 - Discovery of predicted leptoquarks/colorless bosons (202?)
 - Embedding in a consistent theory of flavor and EWSB (20??)

Conclusions

- If confirmed, the B-meson flavor anomalies are perhaps the most important discovery in particle physics since the discovery of the weak gauge bosons and the Higgs
 - Point to existence of new heavy particles in few-TeV range
 - Possibly, these might be connected to a fundamental theory of electroweak symmetry breaking and flavor
 - Strong physics case for future high-energy colliders
- Independent confirmation of the flavor anomalies by Belle II is as crucial as refining current LHCb analyses