

Jahresversammlung der deutschen Teilchenphysiker
Physikzentrum Bad Honnef, 17. November 2018

Probing beyond the Standard Model with Flavor Physics

Matthias Neubert
PRISMA Cluster of Excellence Johannes Gutenberg University Mainz
nitp
0

Beyond the SM

* Direct searches for new heavy particles at LHC have so far not led to a discovery
* While naturalness remains main motivation for thinking about future energy-frontier machines, one observes a shift of focus on indirect NP searches and searches for light, exotic particles (dark photons, axions, ALPs, ...)

Beyond the SM

* No solution yet to hierarchy problem (SUSY ???)
* No answers yet to other big questions:
- Nature of Dark Matter?
- Origin of matter-antimatter asymmetry?
- Explanation of flavor puzzle?
- Dark energy / cosmological constant and strong CP problems
* While the field waits for clues, remarkable things are happening in the flavor sector!

B-meson flavor anomalies:

 Violations of lepton universality?| | | Leptons | |
| :---: | :---: | :---: | :---: |
| mass \rightarrow charge \rightarrow spin \rightarrow name - | | | |
| | | | |
| | I | II | III |

B-meson flavor anomalies

* Intriguing hints of anomalies in B decays entered stage starting in $2012\left(\mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}^{*} ;} \mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K}^{*} ;} \mathrm{P}_{5^{\prime}}, \ldots\right)$

$$
\begin{aligned}
& R_{D^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu}\right)}{\Gamma\left(\bar{B} \rightarrow D^{(*)} \ell \bar{\nu}\right)} ; \quad \ell=e, \mu \\
& R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
\end{aligned}
$$

- If true, they would be hugely important for the future development of high-energy particle physics at large!
* In fact, their importance cannot be overstated ...

B-meson flavor anomalies

* ... as they would give a clear target for future searches at energy frontier!

New physics cannot be too far from here!

Flavor anomalies: $\mathrm{R}_{\mathrm{D}} \& \mathrm{R}_{\mathrm{D}}{ }^{*}$

* A totally unexpected signal of new physics in tree-level, CKM-favored, semileptonic decays of B mesons:

$$
\overbrace{\overline{\mathrm{b}}}^{\mathrm{B}^{0}}
$$

Flavor anomalies: $\mathrm{R}_{\mathrm{D}} \& \mathrm{R}_{\mathrm{D}}{ }^{*}$

Flavor anomalies: $\mathrm{P}_{5}{ }^{\prime}$ etc.

* Various hints of new physics in decays $\bar{B} \rightarrow K^{*} \ell^{+} \ell^{-}$
* Being rare, loop-mediated FCNC processes, these are prime observables to probe BSM effects

Flavor anomalies: $\mathrm{P}_{5}{ }^{\prime}$ etc.

* Several angular observables measured as functions of q^{2}
* Some, like $P_{5}{ }^{\prime}$, are optimized to be insensitive to hadronic uncertainties: [Descotes-Genon, Matias, Ramon, Virto 2012]

M. Neubert - Probing beyond the SM with Flavor Physics

Flavor anomalies: $\mathrm{R}_{\mathrm{K}} \& \mathrm{R}_{\mathrm{K}} *$

* Some scenarios explaining the anomalies in angular observables predicted a departure from unity in the ratios:
[Altmannshofer, Gori, Pospelov, Yavin 2014]

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

- Quite spectacularly, such deviations were later observed at LHCb !

Flavor anomalies: $\mathrm{R}_{\mathrm{K}} \& \mathrm{R}_{\mathrm{K}}{ }^{*}$

$$
R_{K^{(*)}}=\frac{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} \mu^{+} \mu^{-}\right)}{\Gamma\left(\bar{B} \rightarrow \bar{K}^{(*)} e^{+} e^{-}\right)}
$$

B-flavor anomalies: Analysis

* Lots of reasons to be excited!
- Two different sets of anomalies of very different taste
- Several seen by more than one experiment
- In case of $b \rightarrow s \ell^{+} \ell^{-}$several observables deviate from SM predictions, and deviations appear to fit a simple pattern
* All combined, the most compelling hints for physics beyond the SM we have seen so far

Who ordered that?

* Unexpectedly large new-physics effect!
* No apparent connection to big questions of our field!
* Is it good for something else?

(I.I. Rabi)

Model-independent analyses

* Effective weak Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transitions, including both SM and NP effects:

$$
\mathcal{H}_{\mathrm{eff}}^{\mathrm{NP}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{e^{2}}{16 \pi^{2}} \sum_{i, \ell}\left(C_{i}^{\ell} O_{i}^{\ell}+C_{i}^{\prime \ell} O_{i}^{\prime \ell}\right)+\text { h.c. }
$$

with:

$$
\begin{aligned}
O_{9}^{\ell} & =\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right), & O_{9}^{\prime \ell} & =\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
O_{10}^{\ell} & =\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right), & & O_{10}^{\prime \ell}=\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

* Excellent fits obtained with only two NP contributions!
* Analogous Hamiltonian can be written for $b \rightarrow c \ell^{-} \bar{\nu}$

Model-independent analyses

* Global fits to data assuming NP for muons only, e.g.:

[Altmannshofer, Nies, Stangl, Straub 2017]
[see also: Capdevila, Crivelin, Descotes-Genon, Matias, Virto 2017; Hurth, Mahmoudi,
Neshatpour 2016; Ciuchini, Coutinho, Fedele, Franco, Paul, Silvestrini, Valli 2017; ...]

Model-independent analyses

* Discriminating power of R_{K} and R_{K} :

[D'Amico, Nardecchia, Panci, Sannino, Strumia, Torre, Urbano 2017; Geng, Grinstein, Jäger, Martin Camalich, Ren, Shi 2017]

Model building

* Several (but not all) models aim at explaining all anomalies, sometimes along with (g-2) (optimistic ©)
[Bhattacharya, Datta, London, Shivashankara 2014; Alonso, Grinstein, Martin Camalich 2015; Greljo, Isidori, Marzocca 2015; Calibbi, Crivellin, Ota 2015; Bauer, MN 2015; Fajfer, Kosnik 2915; Barbieri, Isidori 2015; Das, Hati, Kumar, Mahajan 2016; Boucenna, Celis, Fuentes-Martin, Vicente, Virto 2016; Becirevic, Kosnik, Sumensari, Zukanovich Funchal 2016; Becirevic, Fajfer, Kosnic, Sumensari 2016; Hiller, Loose, Schoenwald 2016; Bhattacharya, Datta, Guevin, London, Watanabe 2016; Buttazzo, Greljo, Isidori, Marzocca 2016; Barbieri, Murphy, Senia 2016; Bordone, Isidori, Trifinopoulos 2017; Crivellin, Müller, Ota 2017; Megias, Quiros, Salas 2017; Cai, Gargalionis, Schmidt, Volkas 2017; ...]
* R_{D} and $\mathrm{R}_{\mathrm{D}^{*}}$ require tree-level NP near TeV scale
* Rare decays $b \rightarrow s \ell^{+} \ell^{-}\left(\mathrm{R}_{\mathrm{K}}, \mathrm{R}_{\mathrm{K}^{*}}, \mathrm{P}_{5^{\prime}}, \ldots\right)$ require suppressed NP contributions
* If common origin: suppression either dynamically or by means of a symmetry

Model building

* New colorless bosons, e.g. Z' coupled to $\left(\mathrm{L}_{\mu}-\mathrm{L}_{\tau}\right)$:

[Altmannshofer, Gori, Pospelov, Yavin 2014]
- Z' mass in low TeV range, heavy vector-like quarks \sim tens of TeV
- Can explain $\mathrm{P}_{5}{ }^{\prime}$ and predicted LFU violation in R_{K} and $\mathrm{R}_{\mathrm{K}^{*}}$
- Tree-level contribution to Bmeson mixing is problematic
* Scalar / vector leptoquarks, e.g.:

[Hiller, Schmaltz 2014; Alonso, Grinstein, Martin Camalich 2015; Freytsis, Ligeti, Ruderman 2015]
- Can explain both $\mathrm{R}_{\mathrm{D}\left({ }^{*}\right)}$ and $\mathrm{R}_{\mathrm{K}\left({ }^{()}\right)}$at tree-level
- Very large hierarchy in coupling parameters (flavor symmetry?)
- Constraints from B mixing and $\mathrm{B} \rightarrow \mathrm{K}^{(*)} \nu \nu, \mathrm{B} \rightarrow \mathrm{K}^{(*)} \tau^{+} \tau^{-}$

Model building

* New colorless bosons, e.g. Z' coupled to $\left(\mathrm{L}_{\mu}-\mathrm{L}_{\tau}\right)$:

[Altmannshofer, Gori, Pospelov, Yavin 2014]
- Z' mass in low TeV range, heavy vector-like quarks \sim tens of TeV
- Can explain $\mathrm{P}_{5}{ }^{\prime}$ and predicted LFU violation in R_{K} and $\mathrm{R}_{\mathrm{K}^{*}}$
- Tree-level contribution to Bmeson mixing is problematic
- Scalar $\mathrm{SU}(2)_{\mathrm{L}}$ singlet $\mathrm{LQ}\left(\hat{=} \tilde{b}_{R}\right)$:

[Bauer, MN 2015; Cai, Gargalionis, Schmidt, Volkas 2017]
- Explains $\mathrm{R}_{\mathrm{D}\left(^{*}\right)}$ at tree-level but $\mathrm{R}_{\mathrm{K}\left({ }^{*}\right)}$ at one-loop level, like SM
- CKM-like hierarchy in coupling parameters

Emergence of a bigger picture?

* Required new particles in low TeV range, precisely where we (now) expect a solution to the hierarchy problem!
* Leptoquarks can arise from GUTs, neutrino mass models, SUSY models, or as pNGBs
[Popov, White 2016]
* E.g.: Composite Higgs models with partial fermion compositeness:
[Buttazzo, Greljo, Isidori, Marzocca 2016; Barbieri, Murphy, Senia 2016; ...]
- Address hierarchy and flavor problems at $\sim 10 \mathrm{TeV}$, light scalar leptoquarks ($\sim \mathrm{TeV}$) as pNGBs
- Interesting challenges for model building!

Emergence of a bigger picture?

* Data may teach us an important lesson:
- Complementarity of different fields (flavor was sometimes considered irrelevant in the LHC era ...)!
- Intimate connection between flavor and high- p_{T} physics!
* Imagine the LHC legacy:
- Discovery of the Higgs boson (2012)
- Discovery of lepton-flavor non-universality (2019)
- Discovery of predicted leptoquarks / colorless bosons (202?)
- Embedding in a consistent theory of flavor and EWSB (20??)

Conclusions

* If confirmed, the B-meson flavor anomalies are perhaps the most important discovery in particle physics since the discovery of the weak gauge bosons and the Higgs
- Point to existence of new heavy particles in few-TeV range
- Possibly, these might be connected to a fundamental theory of electroweak symmetry breaking and flavor
- Strong physics case for future high-energy colliders
* Independent confirmation of the flavor anomalies by Belle II is as crucial as refining current LHCb analyses

