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Convolution Layer
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Figure 4. Architecture [29] of our default networks for fully pre-processed images, defined in Tab. I.

classification is a parameter that allows to link the signal e�ciency ✏S with the mis-tagging rate of
background events ✏B.

In Sec. III we will use this trained network to test the performance in terms of ROC curves,
correlating the signal e�ciency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening inside
the trained ConvNet by looking at the output of the di↵erent layers in the case of fully pre-
processed images. In Fig. 5 we show the di↵erence of the averaged output for 100 signal and 100
background images. For each of those two categories, we require a classifier output of at least 0.8.
Each row illustrates the output of a convolutional layer. Signal-like red areas are typical for jet
images originating from top decays; blue areas are typical for backgrounds. The first layer seems
to consistently capture a well-separated second subjet, and some kernels of the later layers seem
to capture the third signal subjet in the right half-plane. However, one should keep in mind that
there is no one-to-one correspondence between the location in feature maps of later layers and the
pixels in the input image.

Figure 5. Averaged signal minus background for our default network and full pre-processing. The rows
correspond to ConvNet layers one to four. After two rows MaxPooling reduces the number of pixels by
roughly a factor of four. The columns indicate the feature maps one to eight. Red areas indicate signal-like
regions, blue areas indicate background-like regions.

Example Architecture

• Advantages:

• Symmetry / structure 

• Straightforward

• Potential Problems

• Resolution

• Sparsity

• How to encode 
complex  information



Recurrent Networks
• Can work with 4-vectors (or n-vectors), arbitrary number of 

inputs, depend on ordering. LSTM or GRU are good starting 
points

• For concrete application: Possible combination of architectures

• Or something completely different..
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Today

• Other architecture ideas

• Dealing with systematic uncertainties

• Learning from data

• Understanding network decisions
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Message Passing

• Nodes in the graph: particles 

• Edges: “closeness” of Nodes

• Encoded in Adjacency matrix

• Can also be learned by algorithm

• Model clustering structure by sending messages 
between nodes

Neural Message Passing for Jet Physics 
I Henrion et al  
 Procs. of the Deep Learning for Physical Sciences Workshop at NIPS (2017)

Simple graph update
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Learned Distance Measure

Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Jet images

Single
W jet

Single
QCD jet

Generalized learning of metric

Jets as graphs: W tagging with neural message passing 
I Henrion et al !7
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Input is a pT sorted list of Lorentz 
four-vectors:  

(calo towers or particle flow objects)

Combination Layer (CoLa): create linear combinations:    

Lorentz Layer (LoLa):  Use resulting matrix to extract physics features. 
Main assumption is the Minkowski metric

Deep-learned Top Tagging from Lorentz Invariance

Anja Butter,1 Gregor Kasieczka,2 Tilman Plehn,1 and Michael Russell3

1
Institut für Theoretische Physik, Universität Heidelberg, Germany

2
Institute for Particle Physics, ETH Zürich, Switzerland

3
School of Physics and Astronomy, University of Glasgow, Scotland

We introduce the new top tagger DeepTop2, based on Lorentz-vectors and the Minkowski metric.
It allows us to e�ciently identify boosted, hadronically decaying top quarks not only from calorimeter
information, but also including tracking, using a standard deep neural network. We show how this
Lorentz-vector-based

The identification of hadronic objects has become the
main driving force behind the application of machine
learning techniques in LHC experiments. The task is
to identify the partonic nature of large-area jets or
fat jets. They appear from hadronic decays of Higgs
bosons [1], weak gauge bosons [2], or top quarks [3–
11]. A straightforward question to ask is whether we
can analyze such jet substructure patterns using stan-
dard machine learning techniques, mostly likely trained
on LHC data. An early example are wavelets, describing
patterns of hadronic weak boson decays [12, 13]. The
most widely used approach is image recognition applied
to calorimeter entries in the two-dimensional azimuthal
angle vs rapidity plane, so-called jet images. They can be
used to search for hadronic decays of weak bosons [14–
17] or top quarks [18, 19], or to distinguish quark-like
and gluon-like jets [20]. For top jets it has been shown
that the machine learning approach not only outperforms
the multi-variate QCD-based taggers, but also that the
convolutional network learns all the appropriate sub-jet
patterns. An alternative approach is inspired by natural
language recognition, applied to hadronic decays of weak
bosons [21].

While the number of pixels inside a typical fat jet de-
fines an image which can be evaluated by a convolutional
network [22] without loss of information, a major prob-
lem arises when we attempt to include tracking informa-
tion with its much better experimental resolution [20].

We propose a new approach to jet substructure us-
ing machine learning: rather than relying on analogies
to image or natural language recognition we analyze the
constituents of the fat jet based on the Lorentz group
and Minkowski space-time. For our new DeepTop2 ap-
proach we introduce a set of combination layer (CoLa)
and Lorentz layer (LoLa) as two parts of a deep neural
network. In the usual setup they act on 4-momenta cor-
responding to calorimeter towers. However, unlike other
approaches this DeepTop2 tagger can trivially be ex-
tended to include tracking information and particle flow
objects with the full experimental resolution of these ob-
jects and can therefore be immediately included in to
state-of-the art ATLAS and CMS analyses.

In this letter we first introduce the new machine learn-
ing setup. Using standard fat jets from hadronic top

decays we compare its performance to multivariate QCD-
inspired tagging and an image-based convolutional net-
work [19]. We then extend it to include particle flow in-
formation and estimate the performance gain compared
to calorimeter information only.

Combination Layer — the basic constituents entering
any subjet analysis are a set of N measured 4-vectors,
for example organized as the matrix

(kµ,i) =

0

BB@

k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N

1

CCA . (1)

For a typical hadronic we show the corresponding jet
image in Fig. 1. For our analysis we use the leading
N = 20 constituent. For calorimeter information only we
have confirmed that including more constituents does not
significantly improve the tagging performance. Inspired
by the usual jet clustering history we multiply these 4-
vectors with a matrix Cij

kµ,i
CoLa�! ekµ,j = kµ,i Cij , (2)

to define M 4-vectors j̃j . For illustration purposes, we

Figure 1. Jet image illustrating a signal event, defining N =
20 4-vectors kµ,i with k0 > 1 GeV on the calorimeter level.
unit on color axis? fat jet boundary? 1 GeV correct?

kµ,i =

0

BB@

E0 E1 . . . EN

px,0 px,1 . . . px,N
py,0 py,1 . . . py,N
pz,0 pz,1 . . . pz,N

1

CCA

Fully connected layers for final output

Deep-learning Top Taggers & No End to QCD 
A Butter, GK, T Plehn, M Russell

1707.08966



CoLa
• Goal:  Allow network to reconstruct substructure axes 

(top, W, hard subjets, ..) by summing constituents

• (M - (N+1)) x N trainable weights
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can look at a top decay through an intermediate W -
boson, where the two conditions

k̃2µ,1 = (kµ,1 + kµ,2 + kµ,3)
2 = m2

t

k̃2µ,2 = (kµ,1 + kµ,2)
2 = m2

W (3)

lead to typical non-zero entries

C11 = C21 = C31 and C12 = C22 . (4)

In general, we expect our neural network to learn this
CoLa layer matrix starting from a general ansatz

C =

0

BBBB@

1 1 0 · · · 0 C1,N+2 · · · C1,M

1 0 1
... C2,N+2 · · · C2,M

...
...

...
. . . 0

...
...

1 0 0 · · · 1 CN,N+2 · · · CN,M

1

CCCCA
. (5)

This guarantees that the set of M 4-momenta k̃j includes

1. the sum or all momenta, i.e. the fat jet momentum;

2. each original momentum ki;

3. a trainable set of M � (N +2) linear combinations.

These k̃j will be analyzed by a deep neural network. For
our numerical study we use M =????. Note that as part
of the DNN we will only include one CoLa.

Lorentz Layer — from fundamental theory we know
that the relevant distance measure between two substruc-
ture objects is the Minkowski metric. We then use it
to construct the weight function of the neural network.⇤

The LoLa as the second part of the DNN first transforms
the M combined 4-vectors k̃j into M new objects k̂j

k̃j
LoLa�! k̂j =

0

BBBBBBBBBB@

m(k̃j)
E(k̃j)
pT (k̃j)

w(m)
jm m(k̃m)

w(E)
jm E(k̃m)

w(p)
jm pT (k̃m)

w(d)
4jm djm

1

CCCCCCCCCCA

. (6)

The first three entries in Eq.(6) map individual k̃j onto
the invariant mass, transverse momentum, and energy
entries of each k̃j . The next four entries combine all k̃m
combined with a fixed k̃j , including a trainable set of

weights w(m,E,p,d)
jm . This combination can be a sum over

m or the maximum/minimum over m for fixed j. The
last entry uses the Minkowski distance

d2jm = (k̃j � k̃m)µg
µ⌫(k̃j � k̃m)⌫ . (7)

⇤ We are grateful to Johann Brehmer pointing out that this ap-
proach limits us to fat jets far from black holes.

Figure 2. ROC curve for the new DeepTop2 tagger, com-
pared to the QCD-inspired MotherOfTaggers and the
image-based DeepTop tagger [19]. In all cases we only use
calorimeter information.

Performance — to compare the DeepTop2 approach
to established top taggers we simulate a hadronic tt̄ sam-
ple and a QCD dijet sample with Pythia8 [23] for the
14 TeV LHC. We ignore multiple interactions, because it
can eventually be removed. Moreover, we assume that
our top tagger can be trained on data.
All events are passed through the fast detector sim-

ulation Delphes3 [24], with calorimeter towers of size
�⌘⇥�� = 0.1⇥5� and a threshold of 1 GeV. We cluster
these towers with FastJet3 [25] to R = 1.5 anti-kT [26]
jets with |⌘| < 1.0. This defines a smooth outer shape
of the fat jet and a well-defined jet area. The fat jets
have to fulfill |⌘fat| < 1.0, to guarantee that they are en-
tirely in the central part of the detector and to justify
our calorimeter tower size.
Moreover, we focus on the standard range

pT,fat = 350 ... 450 GeV , (8)

such that all top decay products can be easily captured in
the fat jet. For signal events, we require that the fat jet
can be associated with a true top quark within�R < 1.2.
Unlike in our earlier study we do not re-cluster the anti-
kT jet constituents, because we eventually include track-
ing information and do not compare our results to QCD-
inspired taggers. The additional clustering step which
is not part of our current analysis can very slightly im-
prove the tagging performance for some hyper-parameter
choices. However, we expect this advantage to vanish for
optimized hyper-parameters, and because it cannot easily
be applied to tracking information we skip it throughout
our analysis.

We then use ??? signal and background events to train
a deep network with .... The network is ... Keras [31]
.... In Fig. 4 we compare the performance of our LoLa-
based DeepTop2 tagger to earlier benchmarks: a BDT

Deep-learned Top Tagging from Lorentz Invariance
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We introduce the new top tagger DeepTop2, based on Lorentz-vectors and the Minkowski metric.
It allows us to e�ciently identify boosted, hadronically decaying top quarks not only from calorimeter
information, but also including tracking, using a standard deep neural network. We show how this
Lorentz-vector-based

The identification of hadronic objects has become the
main driving force behind the application of machine
learning techniques in LHC experiments. The task is
to identify the partonic nature of large-area jets or
fat jets. They appear from hadronic decays of Higgs
bosons [1], weak gauge bosons [2], or top quarks [3–
11]. A straightforward question to ask is whether we
can analyze such jet substructure patterns using stan-
dard machine learning techniques, mostly likely trained
on LHC data. An early example are wavelets, describing
patterns of hadronic weak boson decays [12, 13]. The
most widely used approach is image recognition applied
to calorimeter entries in the two-dimensional azimuthal
angle vs rapidity plane, so-called jet images. They can be
used to search for hadronic decays of weak bosons [14–
17] or top quarks [18, 19], or to distinguish quark-like
and gluon-like jets [20]. For top jets it has been shown
that the machine learning approach not only outperforms
the multi-variate QCD-based taggers, but also that the
convolutional network learns all the appropriate sub-jet
patterns. An alternative approach is inspired by natural
language recognition, applied to hadronic decays of weak
bosons [21].

While the number of pixels inside a typical fat jet de-
fines an image which can be evaluated by a convolutional
network [22] without loss of information, a major prob-
lem arises when we attempt to include tracking informa-
tion with its much better experimental resolution [20].

We propose a new approach to jet substructure us-
ing machine learning: rather than relying on analogies
to image or natural language recognition we analyze the
constituents of the fat jet based on the Lorentz group
and Minkowski space-time. For our new DeepTop2 ap-
proach we introduce a set of combination layer (CoLa)
and Lorentz layer (LoLa) as two parts of a deep neural
network. In the usual setup they act on 4-momenta cor-
responding to calorimeter towers. However, unlike other
approaches this DeepTop2 tagger can trivially be ex-
tended to include tracking information and particle flow
objects with the full experimental resolution of these ob-
jects and can therefore be immediately included in to
state-of-the art ATLAS and CMS analyses.

In this letter we first introduce the new machine learn-
ing setup. Using standard fat jets from hadronic top

decays we compare its performance to multivariate QCD-
inspired tagging and an image-based convolutional net-
work [19]. We then extend it to include particle flow in-
formation and estimate the performance gain compared
to calorimeter information only.

Combination Layer — the basic constituents entering
any subjet analysis are a set of N measured 4-vectors,
for example organized as the matrix

(kµ,i) =

0

BB@

k0,1 k0,2 · · · k0,N
k1,1 k1,2 · · · k1,N
k2,1 k2,2 · · · k2,N
k3,1 k3,2 · · · k3,N

1

CCA . (1)

For a typical hadronic we show the corresponding jet
image in Fig. 1. For our analysis we use the leading
N = 20 constituent. For calorimeter information only we
have confirmed that including more constituents does not
significantly improve the tagging performance. Inspired
by the usual jet clustering history we multiply these 4-
vectors with a matrix Cij

kµ,i
CoLa�! ekµ,j = kµ,i Cij , (2)

to define M 4-vectors j̃j . For illustration purposes, we

Figure 1. Jet image illustrating a signal event, defining N =
20 4-vectors kµ,i with k0 > 1 GeV on the calorimeter level.
unit on color axis? fat jet boundary? 1 GeV correct?

Sum of all constituents

Diagonal matrix 
(pass-through constituents)

trainable linear combinations
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• Transforms M Lorentz-vectors into M vectors with P components

• Using:

• Per pseudo-jet variables:  
 
 

• Trainable sums: 

• Sum of differences:

ekµ,i ! ek0,i
ekµ,i ! ekµ,iek⌫,i⌘µ⌫

ekµ,i !
X

j

(eki � ekj)µ(eki � ekj)⌫⌘µ⌫Bij

⌘µ⌫ =

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA

ekµ,i ! ek0,jAij
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Deep Sets Theorem [60]. Let X ⇢ Rd be compact, X ⇢ 2X be the space of sets with bounded

cardinality of elements in X, and Y ⇢ R be a bounded interval. Consider a continuous

function f : X ! Y that is invariant under permutations of its inputs, i.e. f(x1, . . . , xM ) =

f(x⇡(1), . . . , x⇡(M)) for all xi 2 X and ⇡ 2 SM . Then there exists a su�ciently large integer

` and continuous functions � : X ! R`, F : R`
! Y such that the following holds to an

arbitrarily good approximation:1

f({x1, . . . , xM}) = F

 
MX

i=1

�(xi)

!
. (2.1)

We only rely on the Deep Sets Theorem to justify the generality of Eq. (2.1), which can

otherwise be regarded as an interesting, manifestly permutation-invariant parameterization.

The Deep Sets Theorem can be immediately applied to the collider physics context where

observables are viewed as functions of sets of particles. We denote an event with M particles

as {pi}
M
i=1, where pi 2 Rd contains the relevant attributes of particle i (momentum, charge,

flavor, etc.). Phrased in the collider physics language, it states that an observable O can be

approximated arbitrarily well as:

O({p1, . . . , pM}) = F

 
MX

i=1

�(pi)

!
, (2.2)

where � : Rd
! R` is a per-particle mapping and F : R`

! Y is a continuous function. This

provides a mathematical justification for the Observable Decomposition stated in Eq. (1.1).

The content of the Observable Decomposition is that any observable can be viewed as

linearly summing over the particles in some internal space and then mapping the result to

an output space. We refer to R` as the latent space and each component of the per-particle

mapping �(pi) as a filter. The latent space could be, for example, the pixel values of a

detector image or a moment decomposition of the radiation pattern. Summing �(pi) over the

particles induces a latent description of the entire event, which is mapped by the function F

to the value of the observable.

Many existing collider observables ranging from e+e� event shapes to jet substructure

observables naturally fit into the decomposition of Eq. (2.2). In particular, observables that

are defined directly in terms of the particles themselves (i.e. not algorithmically) can often

be exactly encompassed. Several examples of such observables are summarized in Table 1.

The fact that an exact decomposition holds in these cases indicates that the Observable

Decomposition indeed captures an essential aspect of particle-level collider observables.

1
It is formally necessary to restrict the domains and ranges of the functions to be compact because the

proof of the Deep Sets Theorem, given fully in Ref. [60], makes use of the Stone-Weierstrass polynomial

approximation theorem [89], which applies for compact spaces. After the expansion in polynomials of the

features, the result follows by careful application of the fundamental theorem of symmetric polynomials.

– 6 –
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Energy Flow Network
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Particles Observable

Per-Particle Representation Event Representation

Φ

Φ

Φ

F

Energy/Particle Flow Network

Latent Space

Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

competitive with existing techniques on key collider tasks, and provides a platform for visual-

izing the information learned by the model. Beyond this, we demonstrate how our framework

unifies the existing event representations of calorimeter images and radiation moments, and

we showcase the extraction of novel analytic observables from the trained model.

One ever-present collider phenomenon that involves complicated multiparticle final states

is the formation and observation of jets, sprays of color-neutral hadrons resulting from the

fragmentation of high-energy quarks and gluons in quantum chromodynamics (QCD). Numer-

ous individual observables have been proposed to study jets including the jet mass, constituent

multiplicity, image activity [66], N -subjettiness [67, 68], track-based observables [69, 70], gen-

eralized angularities [71], (generalized) energy correlation functions [72, 73], soft drop multi-

plicity [74, 75], and many more (see Refs. [51, 76–80] for reviews). Machine learning methods

have found tremendous applicability to jet classification tasks, greatly outperforming indi-

vidual standard observables. Jet classification provides an ideal case study for the Deep

– 4 –

Energy Flow Networks: Deep Sets for Particle Jets 
Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler  
arXiv:1810.05165 
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Deep Sets Theorem [60]. Let X ⇢ Rd be compact, X ⇢ 2X be the space of sets with bounded

cardinality of elements in X, and Y ⇢ R be a bounded interval. Consider a continuous

function f : X ! Y that is invariant under permutations of its inputs, i.e. f(x1, . . . , xM ) =

f(x⇡(1), . . . , x⇡(M)) for all xi 2 X and ⇡ 2 SM . Then there exists a su�ciently large integer

` and continuous functions � : X ! R`, F : R`
! Y such that the following holds to an

arbitrarily good approximation:1

f({x1, . . . , xM}) = F

 
MX

i=1

�(xi)

!
. (2.1)

We only rely on the Deep Sets Theorem to justify the generality of Eq. (2.1), which can

otherwise be regarded as an interesting, manifestly permutation-invariant parameterization.

The Deep Sets Theorem can be immediately applied to the collider physics context where

observables are viewed as functions of sets of particles. We denote an event with M particles

as {pi}
M
i=1, where pi 2 Rd contains the relevant attributes of particle i (momentum, charge,

flavor, etc.). Phrased in the collider physics language, it states that an observable O can be

approximated arbitrarily well as:

O({p1, . . . , pM}) = F

 
MX

i=1

�(pi)

!
, (2.2)

where � : Rd
! R` is a per-particle mapping and F : R`

! Y is a continuous function. This

provides a mathematical justification for the Observable Decomposition stated in Eq. (1.1).

The content of the Observable Decomposition is that any observable can be viewed as

linearly summing over the particles in some internal space and then mapping the result to

an output space. We refer to R` as the latent space and each component of the per-particle

mapping �(pi) as a filter. The latent space could be, for example, the pixel values of a

detector image or a moment decomposition of the radiation pattern. Summing �(pi) over the

particles induces a latent description of the entire event, which is mapped by the function F

to the value of the observable.

Many existing collider observables ranging from e+e� event shapes to jet substructure

observables naturally fit into the decomposition of Eq. (2.2). In particular, observables that

are defined directly in terms of the particles themselves (i.e. not algorithmically) can often

be exactly encompassed. Several examples of such observables are summarized in Table 1.

The fact that an exact decomposition holds in these cases indicates that the Observable

Decomposition indeed captures an essential aspect of particle-level collider observables.

1
It is formally necessary to restrict the domains and ranges of the functions to be compact because the

proof of the Deep Sets Theorem, given fully in Ref. [60], makes use of the Stone-Weierstrass polynomial

approximation theorem [89], which applies for compact spaces. After the expansion in polynomials of the

features, the result follows by careful application of the fundamental theorem of symmetric polynomials.

– 6 –

Observable O Map � Function F

Mass m pµ F (xµ) =
p

xµxµ

Multiplicity M 1 F (x) = x

Track Mass mtrack pµItrack F (xµ) =
p

xµxµ

Track Multiplicity Mtrack Itrack F (x) = x

Jet Charge [69] Q (pT , Q p
T ) F (x, y) = y/x

Eventropy [71] z ln z (pT , pT ln pT ) F (x, y) = y/x � ln x

Momentum Dispersion [90] pD
T (pT , p2

T ) F (x, y) =
p

y/x2

C parameter [91] C (|~p |, ~p ⌦ ~p/|~p |) F (x, Y ) = 3
2x2 [(Tr Y )2 � Tr Y 2]

Table 1: A variety of common collider observables decomposed into per-particle maps � and

functions F according to Eq. (1.1). Here Itrack is an indicator function over charged tracks.

In the last column, the arguments of F are placeholders for the summed output of �.

2.2 Enforcing infrared and collinear safety

We can formulate the Observable Decomposition specifically for a class of observables of

particular theoretical interest, namely IRC-safe observables [92–95]. IRC safety corresponds

to robustness of the observable under collinear splittings of a particle or additions of soft

particles, which makes the observable tractable in perturbative quantum field theory as well

as robust to experimental resolution e↵ects.

Remarkably, building IRC safety into the latent representation simply corresponds to

energy-weighting the contributions of each particle and restricting � to only depend on the

particle geometry p̂i. The energy-weighting zi and geometry p̂i for particle i depends on the

collider context. At an e+e� collider, it is natural to take zi = Ei and p̂i = pµ
i /Ei, where Ei is

the energy and pµ
i the four-momentum. At a hadron collider, it is natural to take zi = pT,i and

p̂i = (yi, �i), where pT,i is the transverse momentum, yi is the rapidity, and �i the azimuthal

angle.2 In practice, we typically focus on dimensionless observables and use the appropriate

normalized weights: zi = Ei/
P

j Ej or zi = pT,i/
P

j pT,j .

Any IRC-safe observable O can be approximated arbitrarily well by the decomposition:

O
�
{pi}

M
i=1

�
= F

 
MX

i=1

zi �(p̂i)

!
, (2.3)

where � : Rd
! R` is a per-particle angular mapping and F : R`

! R is continuous. All

observables of the form in Eq. (2.3) are manifestly IRC safe due to the energy-weighted

linear sum structure, the dependence of � on purely geometric inputs p̂i, and the fact that

continuous functions of IRC-safe observables are IRC safe.3

2
As discussed in Ref. [28], another sensible choice for the angular measure is p̂i = pµ

i /pT,i. Particle mass

information, if present, can be passed to a PFN via flavor information.
3
Ratios of IRC-safe observables are not necessarily IRC safe [96, 97] since division is discontinuous at zero.
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Observable O Map � Function F

Mass m pµ F (xµ) =
p

xµxµ

Multiplicity M 1 F (x) = x

Track Mass mtrack pµItrack F (xµ) =
p

xµxµ

Track Multiplicity Mtrack Itrack F (x) = x

Jet Charge [69] Q (pT , Q p
T ) F (x, y) = y/x

Eventropy [71] z ln z (pT , pT ln pT ) F (x, y) = y/x � ln x

Momentum Dispersion [90] pD
T (pT , p2

T ) F (x, y) =
p

y/x2

C parameter [91] C (|~p |, ~p ⌦ ~p/|~p |) F (x, Y ) = 3
2x2 [(Tr Y )2 � Tr Y 2]

Table 1: A variety of common collider observables decomposed into per-particle maps � and

functions F according to Eq. (1.1). Here Itrack is an indicator function over charged tracks.

In the last column, the arguments of F are placeholders for the summed output of �.

2.2 Enforcing infrared and collinear safety

We can formulate the Observable Decomposition specifically for a class of observables of

particular theoretical interest, namely IRC-safe observables [92–95]. IRC safety corresponds

to robustness of the observable under collinear splittings of a particle or additions of soft

particles, which makes the observable tractable in perturbative quantum field theory as well

as robust to experimental resolution e↵ects.

Remarkably, building IRC safety into the latent representation simply corresponds to

energy-weighting the contributions of each particle and restricting � to only depend on the

particle geometry p̂i. The energy-weighting zi and geometry p̂i for particle i depends on the

collider context. At an e+e� collider, it is natural to take zi = Ei and p̂i = pµ
i /Ei, where Ei is

the energy and pµ
i the four-momentum. At a hadron collider, it is natural to take zi = pT,i and

p̂i = (yi, �i), where pT,i is the transverse momentum, yi is the rapidity, and �i the azimuthal

angle.2 In practice, we typically focus on dimensionless observables and use the appropriate

normalized weights: zi = Ei/
P

j Ej or zi = pT,i/
P

j pT,j .

Any IRC-safe observable O can be approximated arbitrarily well by the decomposition:

O
�
{pi}

M
i=1

�
= F

 
MX

i=1

zi �(p̂i)

!
, (2.3)

where � : Rd
! R` is a per-particle angular mapping and F : R`

! R is continuous. All

observables of the form in Eq. (2.3) are manifestly IRC safe due to the energy-weighted

linear sum structure, the dependence of � on purely geometric inputs p̂i, and the fact that

continuous functions of IRC-safe observables are IRC safe.3

2
As discussed in Ref. [28], another sensible choice for the angular measure is p̂i = pµ

i /pT,i. Particle mass

information, if present, can be passed to a PFN via flavor information.
3
Ratios of IRC-safe observables are not necessarily IRC safe [96, 97] since division is discontinuous at zero.
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Learning for Discovery
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Cross-entropy and Asimov 
significance  

 17

• Can we optimize directly for the 
Asimov significance, i.e. can we use it as 
a  
loss function ?

• Caveat: To define the number of signal and 
background events we need to cut on the 
discriminator output

• Makes it non-differentiable ??

• Differentiability is needed for gradient descent 
learning

• When optimizing a classifier a typical 
approach is to optimize the accuracy

• For neural networks standard approach 
for training a binary classifier is the 
cross-entropy

• Accuracy maximizing is equivalent to 
minimizing the cross-entropy

1/!"($, &) becomes a smooth 
function of ()

*+,-

• A single sigmoid output neuron
• Replace the discrete number of signal and 

background events by a smooth function of 
the predicted label



Results

Asimov loss training

•best ZA = 6.2 ± 0.6
•Acc = 59%
•AUC=0.80 
•Tries to find a background free 
region

Cross-entropy training  
+ purity cut
•best ZA = 4.8 ± 0.3
•Acc = 92%
•AUC=0.87 

Systematic uncertainty 50%,
Differences in ZA shrink for  
small systematic uncert.

 18

1M events
21 inputs 

fully connected network
Large (4096) batch size needed!

https://arxiv.org/abs/1806.00322



Uncertainties

 19



Data Augmentation
• Test network response under global rescaling of all 4-vector inputs (simimilar to jet 

energy scale)

• Re-train network using shifted samples as well.

• So the network sees multiple (shifted) copies of the event = data augmentation

• Trade off performance and stability

• Now looking into multiple  
simultaenous uncertainties

• resolution

• pile up

• lost particles

• …

• Can adversarial training help 
further?

 20

Plot by Sven Bollweg



on the jet pT, which shows some small pT-dependent
e↵ects, but no large features. As an alternative
strategy, we trained a network using an adversar-
ial strategy with respect to log(m/pT), which more
closely mimics the approach used in Ref. [9]; the
training succeeded in finding a network with a flat
response in log(m/pT), but the distortion in jet mass
was much more significant. In principle, it is possi-
ble to use the adversary to enforce a two-dimensional
decorrelation, but since the pT-dependence is not se-
vere here, we leave this for future study.
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FIG. 4. Signal e�ciency and background rejection
(1/e�ciency) for varying thresholds on the outputs of
several jet-tagging discriminants: traditional networks
trained to optimize classification, networks trained with
an adversarial strategy to optimize classification while
minimizing impact on jet mass, the unmodified ⌧21, and
the two DDT-modified variables ⌧ 0

21, and ⌧ 00
21. The signal

samples have mZ0 = 100 GeV for this example. Gener-
alization to other masses is shown in Sec. VII.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic
decay of a boosted object from those due to a quark
or gluon is an important feature of a jet substruc-
ture tagging tool, but as discussed above it is not the
only requirement. Due to the necessity of accurately
modeling the background, it is desirable that the jet
tagger avoid distortion of the background distribu-
tion. Simpler background shapes are especially pre-
ferred because they allow for robust estimates that
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FIG. 5. Top left, relationship between jet mass and neu-
ral network output in background events for a network
trained to optimize classification compared to an adver-
sarial network trained to optimize classification while
minimizing dependence on jet mass. Top right, rela-
tionship between jet mass and jet substructure variable
⌧21 and the DDT-modified ⌧ 0

21 and ⌧ 00
21 which attempt

to minimize dependence on jet mass. Bottom left, pro-
file of neural network output versus jet mass for the ad-
versarial trained network with varying jet pT thresholds.
Bottom right, contour plot of neural network output ver-
sus jet mass in background events for the adversarially-
trained network. The signal sample used in training has
mZ0 = 100 GeV; generalization to other masses is shown
in Sec. VII.

are constrained by the sidebands; backgrounds that
can be modeled with fewer parameters and inflec-
tions avoid degeneracy with signal features, such as
a peak.

Fig. 5 shows qualitatively that the adversarial net-
work’s response is not strongly dependent on jet
mass. But a quantitative assessment is more dif-
ficult. Mass-independence is not in itself the goal;
instead, we seek reduced dependence on knowledge
of the background shape and reduced sensitivity to
the systematic uncertainties that tend to dilute the
statistical significance of a discovery.

However, our lack of knowledge of the true back-
ground model in general also makes it non-trivial to
rigorously define and estimate the background un-
certainty. In practice, experimentalists use an as-
sumed functional form, with parameters constrained
by background-dominated sidebands to predict the

5

Removing Correlations

• Classifier:

• Distinguish Z’ from QCD

• Adversary:

• Infer jet mass

• Trade-off discrimination power and stability
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Decorrelated Jet Substructure Tagging using 
Adversarial Neural Networks

C Shimmin, P Sadowski, P Baldi, E Weik, D 
Whiteson, E Goul, A Søgaard 1703.03507

be optimized like any other.
The classifier network in this experiment consisted

of eleven input features, three fully-connected hid-
den layers each with 300 nodes having hyperbolic
tangent activation functions, and a single logistic
output node with the binomial cross-entropy clas-
sification objective. The adversarial network con-
sisted of a single input, 50 nodes with hyperbolic
tangent activation functions, and a softmax output
layer with 10 classes corresponding to binned val-
ues of the jet invariant mass (each bin representing
one decile of the background), and the multi-class
cross-entropy classification objective.

Because the adversary is challenged with adapt-
ing to an ever-changing input as the classifier is
trained, and also because its task is relatively easy,
two strategies were used to train the adversary faster
than the classifier. First, the adversary was given
a head start at the beginning of training with 100
updates while the classifier was fixed. Second, the
adversary was trained with a larger learning rate of
1.0 compared to 10�3 for the tagger objective.

The data set used for experiments was divided into
training (80%), validation (10%, used for hyperpa-
rameter tuning), and testing (10%) subsets. Each
classifier input feature was log-scaled if the empirical
skew estimate was greater than 1.0, then standard-
ized to zero mean and unit variance. Model param-
eters were initialized from a scaled normal distribu-
tion [27].

Training was performed using stochastic gradient
descent, applied to mini-batches of 100 examples
from each class. During training, the event weights
were scaled so that the average weight for each class
was 1.0. However, in the adversarial loss function
Ladversary, the signal events were given zero weight,
rendering them invisible to the adversary.

Updates were made using a training momentum
term of 0.5; the learning rate decayed by a factor of
10�5 after each update. Training was stopped after
100 epochs, where an epoch was defined as a single
pass through the background samples (⇡ 400k train-
ing events). Models were implemented inKeras [28]
and Theano [29], and hyperparameters were opti-
mized on a cluster of Nvidia Titan Black processors.

IV. PERFORMANCE

We compare the discrimination power of five can-
didate classifiers: the NN trained without an ad-
versary, the adversarially-trained NN, the unmodi-
fied ⌧21, and the two DDT-modified variables ⌧ 021,
and ⌧ 0021. The performance can be characterized by

... ...X
fc(X)

fa(fc(X))

Lclassification Ladversary

Classifier Adversary

FIG. 3. Architecture of the neural networks in the ad-
versarial training strategy. The classifying network dis-
tinguishes signal from background using the eleven vari-
ables (X) described in the text. The adversarial network
attempts to predict the invariant mass using only the
output of the classifier, fc(X); note that the adversary
has multiple binary classification outputs, correspond-
ing to bins in jet invariant mass, rather than a single
regression output.

measuring the signal e�ciency and background re-
jection of various thresholds on these discriminators
(Fig. 4).

The variable ⌧ 021, which is modified to reduce cor-
relation with the mass, results in a modest decrease
in its classification power relative to the unmodified
⌧21 at mZ0 = 100 GeV, though note that these ef-
fects are mass-dependent for both ⌧ 021 and ⌧ 0021. Sim-
ilarly, the adversarial network does not match the
discrimination power of the traditional classification
network, due to the additional constraint imposed in
its optimization. However, both NNs are clearly able
to take advantage of the combined power of the sub-
structure variables, and o↵er a large improvement
in background rejection for similar signal e�ciencies
compared to classification based on ⌧21 alone.

The focus of this study, however, is to look be-
yond the pure discriminatory power of these tools
and study their e↵ect on the jet mass spectrum. In
Fig. 5, it can be seen that the adversarial network
output for background events has a profile which
is largely independent of jet mass, while the clas-
sifying network is strongly dependent on jet mass.
Similarly, ⌧ 021 and ⌧ 0021 have a lessened dependence
on jet mass, compared to ⌧21. Figure 6 shows the
e↵ect on the jet mass distribution of successively
stricter requirements on these variables. Note that
the adversarial network’s dependence on jet mass is
diminished, but not eliminated, as can be seen in
the contour plot of Fig. 5. This is a reflection of the
trade-o↵ inherent in balancing classification power
with jet mass dependence.

In Fig. 5, we also show the profile of the neural net-
work output versus jet mass, for various thresholds

4



Adversaries

• Goal: distinguish SM Higgs boson 
from new physics in EFT 
approach (using Hjj events)

• Problem: SM scale uncertainty 
can look similar to signal

• Solution: Train network to be 
invariant to MC scale choice, 
again using adversarial approach

 22

Machine Learning Uncertainties with Adversarial Neural Networks
C Englert, P Galler, P Harris, M Spannowsky, 1807.08763



Bayesian Networks

 23

 
Weight Uncertainty in Neural Networks

C Blundell et al,  ICML Proc’s 2015

• So far discussed handling 
uncertainties on the inputs

• How can we with training data 
not fully covering the phase 
space?



Adverserial Examples

• Attempt to trick an image classifying network

• A small amount of specifically crafted noise can greatly alter 
the prediction of a network

• Recent work shows even single pixel changes can matter

 24

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(rxJ(✓,x, y))
x+

✏sign(rxJ(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (rxJ(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w>x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

Ex,y⇠pdata⇣(�y(w>x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

Explaining and Harnessing Adverserial Examples
IJ Goodfellow, J Shlens, C Szegedy 
ICLR Proc. 2015  
One pixel attack for fooling deep neural networks
J Su, D Vasconcellos Vargas, S Kouichi  
1710.08864

Published as a conference paper at ICLR 2015

• Shallow softmax regression models are also vulnerable to adversarial examples.

• Training on adversarial examples can regularize the model—however, this was not practical
at the time due to the need for expensive constrained optimization in the inner loop.

These results suggest that classifiers based on modern machine learning techniques, even those
that obtain excellent performance on the test set, are not learning the true underlying concepts that
determine the correct output label. Instead, these algorithms have built a Potemkin village that works
well on naturally occuring data, but is exposed as a fake when one visits points in space that do not
have high probability in the data distribution. This is particularly disappointing because a popular
approach in computer vision is to use convolutional network features as a space where Euclidean
distance approximates perceptual distance. This resemblance is clearly flawed if images that have an
immeasurably small perceptual distance correspond to completely different classes in the network’s
representation.

These results have often been interpreted as being a flaw in deep networks in particular, even though
linear classifiers have the same problem. We regard the knowledge of this flaw as an opportunity to
fix it. Indeed, Gu & Rigazio (2014) and Chalupka et al. (2014) have already begun the first steps
toward designing models that resist adversarial perturbation, though no model has yet succesfully
done so while maintaining state of the art accuracy on clean inputs.

3 THE LINEAR EXPLANATION OF ADVERSARIAL EXAMPLES

We start with explaining the existence of adversarial examples for linear models.

In many problems, the precision of an individual input feature is limited. For example, digital
images often use only 8 bits per pixel so they discard all information below 1/255 of the dynamic
range. Because the precision of the features is limited, it is not rational for the classifier to respond
differently to an input x than to an adversarial input x̃ = x+ ⌘ if every element of the perturbation
⌘ is smaller than the precision of the features. Formally, for problems with well-separated classes,
we expect the classifier to assign the same class to x and x̃ so long as ||⌘||1 < ✏, where ✏ is small
enough to be discarded by the sensor or data storage apparatus associated with our problem.

Consider the dot product between a weight vector w and an adversarial example x̃:

w>x̃ = w>x+w>⌘.

The adversarial perturbation causes the activation to grow by w>⌘.We can maximize this increase
subject to the max norm constraint on ⌘ by assigning ⌘ = sign(w). If w has n dimensions and the
average magnitude of an element of the weight vector is m, then the activation will grow by ✏mn.
Since ||⌘||1 does not grow with the dimensionality of the problem but the change in activation
caused by perturbation by ⌘ can grow linearly with n, then for high dimensional problems, we can
make many infinitesimal changes to the input that add up to one large change to the output. We
can think of this as a sort of “accidental steganography,” where a linear model is forced to attend
exclusively to the signal that aligns most closely with its weights, even if multiple signals are present
and other signals have much greater amplitude.

This explanation shows that a simple linear model can have adversarial examples if its input has suf-
ficient dimensionality. Previous explanations for adversarial examples invoked hypothesized prop-
erties of neural networks, such as their supposed highly non-linear nature. Our hypothesis based
on linearity is simpler, and can also explain why softmax regression is vulnerable to adversarial
examples.

4 LINEAR PERTURBATION OF NON-LINEAR MODELS

The linear view of adversarial examples suggests a fast way of generating them. We hypothesize
that neural networks are too linear to resist linear adversarial perturbation. LSTMs (Hochreiter &
Schmidhuber, 1997), ReLUs (Jarrett et al., 2009; Glorot et al., 2011), and maxout networks (Good-
fellow et al., 2013c) are all intentionally designed to behave in very linear ways, so that they are
easier to optimize. More nonlinear models such as sigmoid networks are carefully tuned to spend
most of their time in the non-saturating, more linear regime for the same reason. This linear behavior
suggests that cheap, analytical perturbations of a linear model should also damage neural networks.

2

weights input perturbation 



Less Simulation
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Autoencoder

• Self-supervised learning

• Bottleneck with compressed representation

• Dimension reduction

• Denoising

• Regularizers

f(x) g(f(x))

L = (ŷ � g(f(x)))2

kvfrans
deeplearningbook.org !26

http://deeplearningbook.org


Autoencoder for Physics

• Can we find new physics without 
knowing what to look for?


• Train on pure QCD light quark/gluon 
jets and apply to top tagging


• Top quarks identified as anomaly
QCD or What?
T Heimel, GK, T Plehn, JM Thompson, 1808.08979
Searching for New Physics with Deep Autoencoders
M Farina, Y Nakai, D Shih, 1808.08992

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3
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Mass Sculpting
• Autoencoder alone will also learn mass distribution


• Counteract with adversary:


• Tune mass dependency with Lagrange multiplier

!28



Signal contamination

• Procedure works also when signal  
is present in training data

• This means a search for exotic 
new physics with unknown  
shower patterns (dark showers)  
could be  done using  data-only 
training

!29



Understanding

 30



How much information 
is in a jet?

• Study W tagging

• Use n-subjettiness with different 
exponents to build basis

• Train ANNs with different numbers of 
variables

 31

How Much Information is in a Jet?
K Datta, A Larkoski  
arXiv:1704.08249
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Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

and azimuth between particle i and axis K in the jet. There are numerous possible choices for

the N axes in the jet; in our numerical implementation, we choose to define them according
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particle 1

particle 2

(a)

particle 1

particle 2

particle 3

z1

z2

1 � z1 � z2

✓12

✓23

✓13

(b)

Figure 2: Illustration of the momentum fraction and pairwise angle variables that describe

2-body (right) and 3-body (left) phase space.

to the exclusive kT algorithm [29, 30] with standard E-scheme recombination [31]. Note that

⌧
(�)
N = 0 for a jet with N or fewer particles in it.

To identify structure in the jet, we need to measure an appropriate number of di↵erent

N -subjettiness observables. This requires an organizing principle to ensure that the basis of

observables is complete and minimal. Our approach to ensuring this is to identify the set

of N -subjettiness observables that can completely specify the coordinates of M -body phase

space. Ensuring that the set is minimal is then straightforward: as M -body phase space is

3M � 4 dimensional, we only measure 3M � 4 N -subjettiness observables. A jet also has an

overall energy scale. To ensure sensitivity to this energy scale, we will also measure the jet

mass, mJ .

We will describe how to do this for low dimensional phase space, and then generalize to

arbitrary M -body phase space. We will work in the limit where the jet is narrow and so all

particles in the jet can be considered as relatively collinear. This simplifies the expressions

for the values of the N -subjettiness observables to illustrate their content, but does not a↵ect

their ability to span the phase space variables.

• 2-Body Phase Space: 2-body phase space is 3 · 2 � 4 = 2 dimensional. For a jet with

two particles, the phase space can be completely specified by the transverse momentum

fraction z of one of the particles:

z =
pT1

pTJ
, 1 � z =

pT2

pTJ
, (2.2)

and the splitting angle ✓ between the particles. This configuration is shown in Fig. 2a. To

uniquely identify the z and ✓ of this jet, we can measure two 1-subjettiness observables,

defined by di↵erent angular exponents ↵ 6= �. For concreteness, we will measure ⌧
(1)
1 and

⌧
(2)
1 .

To determine the measured values of the 1-subjettiness observables, we need to determine

the angle between the individual particles of the jet and the axis. Because E-scheme

recombination conserves momentum, the angles between the particles 1 and 2 and the
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tion of observables sensitive to two-prong structure measured on the jets. In Fig. 3, we plot

the mass of the signal and background jets as defined by the simulation and jet finding from

earlier. Applying a mass cut around the Z boson peak, we then measure the two-prong jet

observables. In Fig. 4, we show the distributions of the N -subjettiness and energy correlation

function ratios ⌧
(�)
2,1 , D

(�)
2 , and N

(�)
2 . As was extensively studied in the original works, these

plots make clear the separation power that these observables enable. When we compare these

observables to the discrimination power of the M -body phase space observables, we relax the

hard mass cut, and let the machine learn the optimal mass and observable cuts dynamically.

In Fig. 1, we plot the signal jet (Z boson) e�ciency versus the background jet (QCD)

rejection rate for the collection of observables that minimally span M -body phase space, along

with the jet mass. The observables that are passed to the neural network to specify M -body

phase space are, explicitly:

2-body: ⌧
(1)
1 , ⌧

(2)
1

3-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(1)
2 , ⌧

(2)
2

4-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(1)
3 , ⌧

(2)
3

5-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(1)
4 , ⌧

(2)
4

6-body: ⌧
(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(1)
5 , ⌧

(2)
5

Significant gains in discrimination power are observed by including observables sensitive to

higher-body phase space, until enough observables to specify at least 4-body phase space are

included. Including observables sensitive to 5- and 6-body phase space does not improve

discrimination power, and therefore suggests that there is only an extremely limited amount

of information in a jet useful for discrimination.

To see what information is necessary to accomplish the maximal discrimination power,

in Fig. 5 we plot the signal e�ciency versus background rejection rate for the collection of

N -subjettiness and energy correlation function ratios plotted earlier. For comparison, we

also include the corresponding curves for the jet mass, jet mass plus 3-body phase space

observables, and jet mass plus 4-body phase space observables. The discrimination power

of all of these observables are comparable, and this illustrates that they appear to capture

essentially all of the information contained in the 3-body phase space observables. Then, to

match the maximum discrimination power (as represented by the jet mass plus 4-body phase

space curve), one just needs to augment the measurement of jet mass and an N -subjettiness

or energy correlation function ratio with observables that are sensitive to 4-body phase space.

We leave the construction of the optimal 4-body phase space observables for this purpose to

future work.

As a cross check that our minimal basis of N -subjettiness observables listed above does

capture the maximal amount of information useful for discrimination, in Fig. 6, we compare

our minimal basis to an overcomplete basis of observables. Here, we measure the mass and the

following collection of N -subjettiness observables on the jet:
n

⌧
(0.25)
1 , ⌧

(0.5)
1 , ⌧

(1)
1 , ⌧

(2)
1 , ⌧

(4)
1 , ⌧

(0.25)
2 , ⌧

(0.5)
2 , ⌧

(1)
2 , ⌧

(2)
2 , ⌧

(4)
2 , ⌧

(0.25)
3 , ⌧

(0.5)
3 , ⌧

(1)
3 , ⌧

(2)
3 , ⌧

(4)
3 , (3.2)

⌧
(0.25)
4 , ⌧

(0.5)
4 , ⌧

(1)
4 , ⌧

(2)
4 , ⌧

(4)
4

o
.
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Figure 1: Z boson jet e�ciency vs. QCD jet rejection rate plot as generated by the deep neural

network. Details of the event simulation, jet finding, and machine learning are described in

Sec. 3. The di↵erent curves correspond to the mass plus collections of observables that uniquely

define M -body phase space. Discrimination power is seen to saturate when 4-body phase space

is resolved.

the M -body phase space observables to standard observables as a benchmark. We conclude in

Sec. 4. Additional details are in the appendices.

2 Observable Basis

In this section, we specify the basis of IRC safe observables that we use to identify structure in

the jet. For simplicity, we will exclusively use the N -subjettiness observables [24–26], however

this choice is not special. One could equivalently use the originally-defined N -point energy

correlation functions [27], or their generalization to di↵erent angular dependence [28]. Our

choice of using the N -subjettiness observbles in this analysis is mostly practical: the evaluation

time for the N -subjettiness observables is significantly less than for the energy correlation

functions. We also emphasize that the particular choice of observables below is to just ensure

that they actually span the phase space for emissions in a jet. There may be a more optimal

choice of a basis of observables, but optimization of the basis is beyond this paper.

The N -subjettiness observable ⌧
(�)
N is a measure of the radiation about N axes in the jet,

specified by an angular exponent � > 0:

⌧
(�)
N =

1

pTJ

X

i2Jet
pT i min

n
R

�
1i, R

�
2i, . . . , R

�
Ni

o
. (2.1)

In this expression, pTJ is the transverse momentum of the jet of interest, pT i is the transverse

momentum of particle i in the jet, and RKi, for K = 1, 2, . . . , N , is the angle in pseudorapidity

and azimuth between particle i and axis K in the jet. There are numerous possible choices for

the N axes in the jet; in our numerical implementation, we choose to define them according

– 3 –
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Novel Jet Observables from 
Machine Learning 
K Datta, A Larkoski  
arXiv:1710.01305

1. Construct a basis of observables that is sensitive to the phase space of particles in a jet.

Measure these basis observables on your signal and background samples.

2. Use machine learning techniques, such as neural networks, to identify the resolved M -

body phase space at which signal vs. background discrimination power saturates.

3. Construct a function of the phase space variables at which discrimination power saturates

which has tunable parameters. This function will be a new observable on the jets that

can be used individually for discrimination.

4. Fix the parameters in the new observable by demanding that it maximizes some discrim-

ination metric, such as the area under the signal vs. background e�ciency curve (ROC

curve).

This algorithm is simple enough that it can be automated with essentially no human input,

with a specified basis of observables to span M -body phase space and an appropriate functional

form for the observable. We will present and use a particular choice for the phase space basis

and functional form of the final observable in this paper, but these may need to be modified

and optimized for di↵erent studies.

For concreteness, here we apply the above approach to the problem of discriminating highly

boosted decays of the Standard Model Higgs boson to a pair of b-quarks from splittings of gluons

to b-quarks. We study identification of H ! bb̄ decays here as the signal and background jets

both have a two-prong substructure, and theoretically-optimized discrimination observables

have not been studied in great detail. Recently, Ref. [21] utilized jet substructure approaches

to propose a promising search strategy for this boosted decay mode of the Higgs, encouraging

the possibility of discovery in data from Run-II of the LHC. In order to further increase the

probability of discovery, it is necessary to explore new strategies to ensure sensitivity to the

specific features of this decay mode.

Using the organizing principle proposed in Ref. [19], if discrimination power saturates at

M -body phase space then the machine must be learning some function of the corresponding

3M � 4 phase space variables. To resolve the M -body phase space, we use the N -subjettiness

observables [22, 23], as employed in Ref. [19]. In the case of discrimination of boosted H ! bb̄

decays to g ! bb̄ splittings, we find that the discrimination power increases only slightly once

3-body phase space is resolved. Thus, we will only study the resolved 3-body phase space in

this paper. The function of the observable on 3-body phase space that we study is a simple

product form

�3 ⌘
⇣
⌧
(0.5)
1

⌘a⇣
⌧
(1)
1

⌘b⇣
⌧
(2)
1

⌘c⇣
⌧
(1)
2

⌘d⇣
⌧
(2)
2

⌘e
. (1.1)

Here, the ⌧
(�)
N are the N -subjettiness observables, 3-body phase space is 5 dimensional, and

the parameters a, b, c, d, e will be chosen to maximize discrimination power. We emphasize

that while this product form is simple, there may be a better choice for the form of function

on phase space.

We show in Fig. 1 the results of this analysis. We consider jets in simulation on which

no grooming has been applied and on which the modified mass-drop tagger (mMDT) [24, 25]

has been applied. We then measure the mass mJ of these ungroomed or groomed jets (as

appropriate) and make a cut of mJ 2 [100, 150] GeV, in the range of the Higgs peak. On these

– 2 –

(a) (b)

Figure 3: Histograms for the values of exponents of the product observable. For ungroomed

(a) and groomed (b) jets exponent values in these histograms were accepted when the generated

AUCs for the binned signal and background likelihood distributions were above 0.81 and 0.73

respectively.

We apply this procedure to jets that have been groomed with mMDT and those that have

not. In the groomed case, due to the exclusion of soft emissions and contamination from initial

state radiation (ISR) or underlying event, it is relatively straightforward to extract a useful

physical understanding from the obtained functional form of the observable. In Fig. 3, we plot

the distributions of the exponents a, b, c, d and e with the requirement that the AUC for the

corresponding product observable is greater than 0.81 or 0.73, for ungroomed and groomed jets,

respectively. These distributions will enable us to extract the exponent values for which the

AUC is maximized for the binned likelihood distributions of the product observable measured

on signal and background.

By studying the histograms of the exponents one can make the following conclusions:

• For the ungroomed jets, AUC is maximized when c = 0, d = 0.5, e = �1 as the

distributions for these exponents are very narrow. Since the distributions for a and b are

both approximately uniform on [�5, 5], further interpretation is required.

• For the groomed jets, AUC is maximized when c = 0, d = �2, e = 2. Again, since a and

b are both approximately uniformly distributed over [�5, 5], further analysis is required

to determine their optimal values.

To determine the optimal values for a and b for both ungroomed and groomed jets, we work

to understand the correlation between the exponents.

To determine the correlation between the exponents a and b, we plot their joint probability

distribution with the same cuts on the resulting observables’ AUC. For both ungroomed and

groomed jets, this is shown in Fig. 4. These plots demonstrate a strong correlation between
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(a) (b)

Figure 4: Heat maps of the correlation between a and b exponents of the product observable

for ungroomed (a) and groomed (b) jets.

Figure 5: Variation of area under the ROC curve for the observable when the a exponent is

scanned over the range [�5, 5], keeping the c, d and e exponents fixed and varying b with a as

per Eq. (3.2).

these exponents, which to very good approximation is:

Ungroomed : a + b = 2 , Groomed : a + b = �2 . (3.2)

These relationships can be used to fix b, for example, as a function of exponent a. To determine

the optimal value of the exponent a, we then fix b, c, d, and e as earlier, and calculate the

AUC for a 2 [�5, 5]. The results of this scan are shown in Fig. 5 for ungroomed and groomed

jets. In particular, we note from the plot that AUC is maximized for the ungroomed case when

a = 2 and for the groomed case when a = �2. This implies that the exponent b = 0 for both

cases, using Eq. (3.2).
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(a) (b)

Figure 6: Distributions of the product observable for signal (red) and background (blue),

measured on the samples of ungroomed (a) and groomed (b) jets showered with Pythia, within

a mass cut of mJ 2 [100, 150] GeV.

Thus, the product observable takes on the following forms for the two kinds of jets:

Ungroomed : �3 =

⇣
⌧
(0.5)
1

⌘2 ⇣
⌧
(1)
2

⌘0.5

⌧
(2)
2

, Groomed : �
(g)
3 =

 
⌧
(2)
2

⌧
(0.5)
1 ⌧

(1)
2

!2

. (3.3)

Any monotonic function of the observable will produce the same discrimination power, and so

we can simplify the expression for the groomed product observable. For the optimal product

observable for groomed jets, we use the expression:

�
(g)
3 =

⌧
(2)
2

⌧
(0.5)
1 ⌧

(1)
2

. (3.4)

It is interesting to note that the optimal observables from this method are Sudakov safe [44, 45]

because they are formed from ratios of IRC safe observables.

3.2 Physical Interpretation

In Fig. 6, we plot the distribution of these new product observables measured on signal and

background jets showered in Pythia. This shows that these product observables on ungroomed

and groomed jets e↵ectively separate signal from background. Additionally, in Fig. 7, we mea-

sure these product observables determined from the Pythia signal and background samples on

the jets showered with Herwig. We observe a similar relative separation between the distri-

butions, although the absolute scale is di↵erent, in the Herwig samples suggesting that these

observables are sensitive to real physics, and not idiosyncrasies of the parton shower programs.

Especially for groomed jets, these simple forms for the product observables enable a nice

interpretation of the physics to which they are sensitive. In the case of ungroomed jets, there

are multiple sources of radiation (final state, initial state, underlying event, etc.) that makes

an interpretation a bit more challenging, so we won’t discuss it more here. When the jets are
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Parametrise phase space
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(a) (b)

Figure 7: Distributions of the product observable for signal (red) and background (blue),

measured on the samples of ungroomed (a) and groomed (b) jets showered with Herwig.

particle 1

particle 2

particle 3

z1

z2

1 � z1 � z2

✓12

✓23

✓13

Figure 8: Illustration of the momentum fraction and pairwise angle variables that describe

3-body phase space.

groomed with mMDT, however, contamination radiation from the initial state or underlying

event is dominantly removed, and so a picture of the jet exclusively with radiation from the

final state is accurate. In this case, the mMDT jet with resolved 3-body phase space consists

of the b and b̄ pair, and the dominant gluon emitted o↵ of them. The 3-body phase space

configuration is shown in Fig. 8, with transverse momentum fractions zi and pairwise angles

✓ij . In what follows, we will let particles 1 and 2 be the b and b̄, and particle 3 be the gluon.

Because we make a cut on the jet mass and there is no soft singularity for g ! bb̄ splitting,

we assume that the emitted gluon is relatively soft and/or collinear with respect to the b and

the b̄. With this assumption, then the value of ⌧
(0.5)
1 is completely determined by the b and b̄.

Then, the value of ⌧
(0.5)
1 is approximately

⌧
(0.5)
1 ' z((1 � z)✓12)

0.5 + (1 � z)(z✓12)
0.5 (3.5)

= (z(1 � z)✓212)
0.25

�
z
0.75(1 � z)0.25 + z

0.25(1 � z)0.75
�

.

Here, z is the transverse momentum fraction of the b quark subjet, for example. The com-
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(a) (b)

Figure 9: Signal e�ciency versus background rejection rate for N -subjettiness ratio ⌧
(2)
2,1 , N

(2)
2 ,

and D
(2)
2 , measured on ungroomed (a) and groomed (b) jets showered using Pythia, compared

to the discrimination power of the product observable �3 or �
(g)
3 . The discrimination power of

the product observable is comparable to that of the standard observables.

(a) (b)

Figure 10: Signal e�ciency versus background rejection rate for N -subjettiness ratio ⌧
(2)
2,1 ,

N
(2)
2 , and D

(2)
2 , measured on ungroomed (a) and groomed (b) jets showered using Herwig,

compared to the discrimination power of the product observable �3 or �
(g)
3 .
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discrete

continuous

I(X,Y ) = H(Y )�H(Y |X) = H(X)�H(X|Y )



Mutual Information in 
Physics

 34

Gaining (Mutual) Information about Quark/Gluon Discrimination
AJ Larkoski, J Thaler, WJ Waalewijn  
JHEP11(2014)129

Usually care about mutual information of a variable with Truth  
 
Related to ROC curve



Information Plane

• True Value: Y

• Input: X
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On the Information Bottleneck Theory of Deep Learning, Saxe et al,  
ICLR Proc 2018  
Opening the Black Box of Deep Neural Networks via Information  
Ravid Shwartz-Ziv, Naftali Tishby
1703.00810
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On the Information Bottleneck Theory of Deep Learning, Saxe et al,  
ICLR Proc 2018  
Opening the Black Box of Deep Neural Networks via Information  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1703.00810

last layer

Two phases?
tanh Relu

Compression = Generalisation?
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Figure 11: The learned EFN pixelization of the rapidity-azimuth plane around the jet center

with latent dimensions between 8 and 256 in powers of 2. The learned filters are dynamically

sized, with smaller filters probing the core of the jet and larger filters in the periphery. A

large version of the last panel is shown in Fig. 21.
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Deep Dream
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DeepDream: Slighly modify image to increase classification 
score. Highlight the features the network learned



FPGA DNN Triggers
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Fast inference of deep neural networks 
in FPGAs for particle physics
J Duarte et al
1804.06913

• Framework to translate NNs to 
FPGAs for fast (L1 trigger) execution

• Latency of 75-150 ns
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