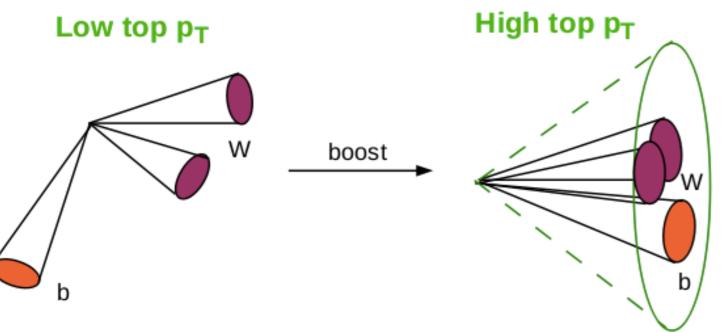
Deep Learning -Challenge Problem

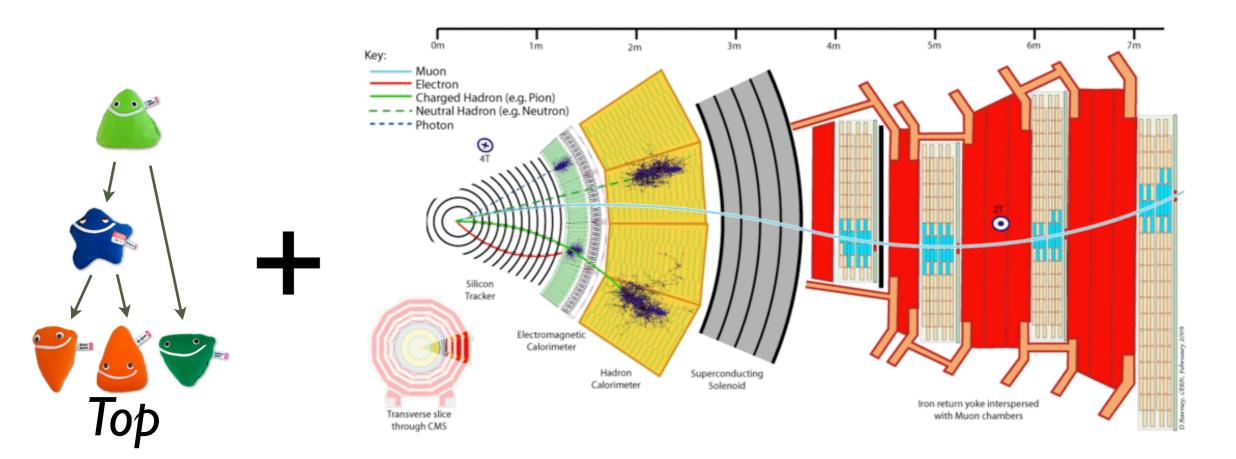
Gregor Kasieczka (gregor.kasieczka@uni-hamburg.de) I st Terascale ML School 2018-10-25



Bundesministerium für Bildung und Forschung

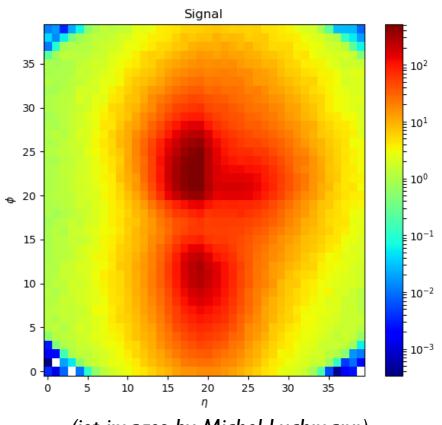
Heavy Resonance Tagging

- Hadronically decaying top/Higgs/W/Z
- Contained in one (large-R) jet
- How to distinguish from light quark/gluon jets (and from each other)
- For new physics searches (and SM studies)


Towards an Understanding of the Correlations in Jet Substructure D Adams et al (BOOST 2013 Participants), Eur.Phys.J. C75 Top Tagging, T Plehn, M Spannowksy, J.Phys. G39 (2012) 083001 Boosted Top Tagging Method Overview, GK, Proc.Top2017 Some Classical solutions: (aka jet substructure)

Mass

Calculate using a grooming algorithm (eg mMDT/softdrop or pruning)


Centers of hard radiation n-subjettiness or energy correlation functions

- Flavour
 b tagging of large-R jets or subjets
- Soft substructure
 Color connection
- Inclusive reconstruction HEPTopTagger V2, HOTVR
- Other substructure variables
 Shower deconstruction, template tagger, ...

- Reconstruct energy with calorimeter (improve resolution using tracker)
- Cluster energy deposits into jet
- Preprocess:
- center \rightarrow rotate \rightarrow flip (twice) \rightarrow pixelate \rightarrow crop \rightarrow normalise
 - center: centroid is at (0/0)
 - rotate: principal axis is vertical
 - flip: in (x<0, y>0)-plane maximum intensity
 - crop: to nxn images
 - normalise: intensity of each pixel divided by total intensity

(Overlay of 100k images)

(jet images by Michel Luchmann)

Dataset Basics

- Goal: discriminate between hadronically decaying top quarks and QCD jets
 - Maximise area under ROC curve (AUC)
- Theory setting:
 - 14 TeV, hadronic tops for signal, qcd diets background, delphes ATLAS detector card with Pythia
 - No MPI/pile-up included
 - We cluster particle-flow entries (produced by Delphes E-flow) into anti-kT 0.8 jets in the pT range [550,650]
 - All top jets are matched to a parton-level top within $\Delta R = 0.8$, and to all top decay partons within 0.8
 - We also require |eta|_jet < 2

Version A: Constituents

- The leading 200 jet constituent four-momenta are stored, with zero-padding for jets with fewer than 200
- Constituents are sorted by pT, with the highest pT one first
- The truth top four-momentum is stored as truth_px etc.
- A flag (I for top, 0 for QCD) is kept for each jet. It is called is_signal_new
- The variable "ttv" (= test/train/validation) is kept for each jet. It indicates to which dataset the jet belongs. It is redundant as the different sets are already distributed as different files.
- Either work with a fully connected architecture or try something else

Version B: Images

- center \rightarrow rotate \rightarrow flip (twice) \rightarrow pixelate \rightarrow crop \rightarrow normalise
 - center: centroid is at (0/0)
 - rotate: principal axis is vertical
 - flip: in (x<0, y>0)-plane maximum intensity
 - crop: to nxn images
 - normalise: intensity of each pixel divided by total intensity
- Images after preprocessing of constituents
- Use a convolutional approach
- Provided by Michel Luchmann (Heidelberg)

Deep-learning Top Taggers or The End of QCD? GK, Tilman Plehn, Michael Russell, Torben Schell JHEP 05 (2017) 006 Pulling Out All the Tops with Computer Vision and Deep Learning S Macaluso, D Shih, 1803.00107

Ingredients

- <u>Dense</u> Layer (Fully connected layer) keras.layers.Dense(number_of_nodes, activation=`relu')
- <u>Convolutional Layer (For image data, kernel_size=(2,2) corresponds to a 2x2 pixel large filter)</u> keras.layers.Conv2D(number_of_filters, kernel_size, padding='same', activation='relu')
- <u>Flatten</u> Layer (turn image data into a list of numbers. Needed to go from Conv to Dense layers) keras.layers.Flatten()
- First layer:
 - Can be anything, but needs arguments input_shape=(80,) (constituents) or input_shape=(40,40,1) (images) as extra argument. Only the first layer should have the input shape argument.
- Last layer of your network:
 - keras.layers.Dense(2, activation=`softmax')
 - (recommend to start with activation=`relu' for all other layers)

Documentation at: https://keras.io/

Some ideas

- Both versions:
 - more data, learning rate, optimiser algorithm, epochs, dropout, early stopping, Smart use of val?
- Version A (constituents)
 - more constituents, calculate physics quantities (mass?), other preprocessing (normalisation?), more layers, more nodes, ...
- Version B (images)
 - More filters, filter size, more Conv layers, pooling, more dense layers/nodes, image processing, locally connected layers,

Getting Started

- Login to your AWS machine
 - mv .clng challenge
 - cd challenge
 - jupyter notebook
- Connect to the notebook server

Overview

0 - 1					
do_constit.ipynb	Constituents				
do_images.ipynb	Images				
test_without_truth_100k.h5	5				
test_without_truth_img_100k.h5					
The train.h5					
train_img.h5					
val.h5					
val_img.h5					

Training train.h5 and train_img.h5

I.2M labelled examples Nominal sample

Validation

val.h5 and val_img.h5

20k labelled examples Systematic applied: like "test"

Test

test_without_truth_100k.h5 and test_without_truth_img_100k.h5

100k unlabelled examples Systematic applied: like "real" data

- Based on
 - <u>https://goo.gl/XGYju3</u>
- But with a systematic twist (-; (Thanks to Sven!)

Your task

- Calculate probability to be signal for each jet in the test sample
- Make sure to keep the ordering!
- Use images or constituents as input both are fine.
- Produce a zipped .npy file and upload to challenge page
- Winner ist best area-under-curve on subset of the test sample* (*we keep the right to veto solutions)
- Submissions close today at 23:00 (Hamburg time)

Performance Measures

Better 0.5 Areq under Curvo

ROC: Receiver operation characteristic

AUC: Area under curve

Other caveats

- There will be a small symbolic price for the best submission
- We ask the three best submissions to give a brief presentation tomorrow
- Team work is encouraged, individual submissions are ok as well
- Fair-play: Don't mess with other peoples machines, etc.
- However, I think there is one clever "cheaty" (that does not involve hacking, etc.) way for a perfect score

Way to submission

- Train network
- Apply to test sample
- Download result.zip file
- Go to:
 <u>https://competitions.codalab.org/competitions/20432</u>
- (you might need to register at Codalab)
- Submit your result!

Score in Leaderbord is based on random 10% of data! Use full sample for final ranking..

Learn

Top Quark Tagging Challenge

Secret url: https://competitions.codalab.org/competitions/20432?secret_key=e7c978d6-683e-459f-95e7-720dd4e0f086 Organized by gregor.kasieczka - Current server time: Oct. 24, 2018, 5:08 p.m. UTC

	Current Challenge Phase June 30, 2013, midnight UTC			End Competition Ends Oct. 25, 2018, 11 p.m. UTC			
earn the Details	Phases	Participate	Results				
Overview Evaluation		Welcor A Challenge ML.		uarks with systematic uncertainties. Organised as part of the 1st Terascale School of			

Learn the Details	Phases	Participat	te Results						
Get Data		Challenge Phase							
Files		Phase description							
Submit / View Res	sults	None							
	Max submissions per day: 20								
		Max submissions total: 20							
Click the Submit button to upload a new submission.									
		Optic	Optionally add more information about this submission						
		Submit							
		Here are your submissions to date (Indicates submission on leaderboard):							
		# S	CORE	FILENAME	SUBMISSION DATE	STATUS	 ✓ 		
		1 0	.9043234788	result (1).zip	10/24/2018 16:57:00	Finished	✓ +		