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High Energy Physics at the LHC

Today, I'm going to use Jets
=as my prototypical example.
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Background and Motivation

Usual paradigm: train in simulation, validate on data, test on data.
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It data and simulation differ, this is sub-optimall



Background and Motivation

Usual paradigm: train in simulation, validate on data, test on data.
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Background and Motivation

Usual paradigm: train in simulation, validate on data, test on data.
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Background and Motivation
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Background and Motivation
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Background and Motivation

Determine the performance
of the WP Iin data.

dN/dh

How did we get this?

d|JetS — fq X Q + (1-fq) X G
Z+jets = gqx Q + (1-gq) X G

classifier huc

two event samples with

2 equations, 2 unknowns (Q, G) different /g fractions

(N.B. f & g from simulation and selection can’t bias Q and G - more on that later)



Background and Motivation

Determine the performance
of the WP Iin data.

dN/dh

How did we get this?

dljetS — fq X Q + (1-fq) X G
Z+jets = gqx Q + (1-gq) X G

classifier huc

WP In data:

€signal,data, €back,data

2 equations, 2 unknowns (Q, G)

Can correct the MC to have the same performance as data.



Background and Motivation

Usual paradigm: train in simulation, validate on data, test on data.

Once we have scale factors (& their uncertainty), we
can ensure that our analysis will be accurate.

...S0 what is the problem?

remember my claim from earlier:

It data and simulation differ, this is sub-optimal!

This Is an accuracy versus precision prob

‘easy’ to achieve accuracy through calibrati
ible.

results may not be the best one poss

em. ItiIs
on, but the



Background and Motivation

In this 2D feature space, we can actually derive hgata.

Using the same trick as earlier;: 9@  £18f ?
5 8 e
dijets = fgx Q + (1-fq)) x G L 14; i

Z+jets = gg X Q + (1-gq) X G 10
. quark vs gluon
2 equations, 2 unknowns (Q, G) 6 jets in data
(now Q and G are 2D histograms) Z
0

T R
0.15
Track Width

0.1

In general:

hvme(nik, Track Width) 2 hgata(nirk, Track Width)



Take 1t to the extreme

O stress this point, suppose that hvc Is the
random classifier:

hme = O if you pick a random number x in [0,1] and X < €
1 otherwise

We can calibrate this
classifier in data, but
clearly, 1t is sub-optimal !

false positive

true positive



One more slide about why it matters

Sherpa - PYTHIA 1.00
0.75 —specially important for
0.50 deep learning using subtle
m 025 features = hard to model!
. 0.00

—0.25

W boson radiation
pattern - same physics,
different simulators!

—0.50

—0.75

Normalized Intensity Difference

—1.00

J. Barnard, E. Dawe, M. Dolan, N. Rajcic,
Phys. Rev. D 95 (2017) 014018



Achieving the Optimal Classifier

Two ways around the problems mentioned earlier:

(1) Derive the classifier in MC, but don't let it use
information that is not present in data.

‘Learning to pivot”
G. Louppe, M. Kagan, K. Cranmer, 1611.01406

(2) Train on unlabeled data.

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145
E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 174



Achieving the Optimal Classifier

Two ways around the problems mentioned earlier:

(1) Derive the classifier in MC, but don't let it use
irt _ation that is not present in data.
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18

A clever idea Is to builld in robustness to the loss function:

hyperparmeter

. oss = usual loss - k X adversarial loss

/N

e.g. binary cross-entropy can the output of the
using per-instance labels classitier tell if it is
from simulation. looking at data or MC??
.e. If his the classitier,
using h(x) as a feature, try

to classity data versus MC.




When pivoting is “optimal” in data

'l show some pictures to
give you some intuition.

Useful
iInformation
IN sSimulation

In this case, the
- Usetul adversary ensures
information that the classifier
(could be a n data can’t use information
truth bit!) from simulation that
IS actually not useful
IN data.




When pivoting is “suboptimal” in data 20

The simulation
can't use what it
doesn't know.

Useful
iInformation

Useful In data
Information
INn simulation
(could be a

truth bit!)

...many other applications of this approach, such as reducing sensitivity to
systematic uncertainties, unwanted correlations between features, etc.



Another possibility: Learn from data!

One of the biggest challenges with any MC-based method is
that it can’t use information that the MC doesn’t know about.

One solution is to train directly on data !

In general, this Is not possible since data are
unlabeled. However, in a wide range of cases, it
IS possible to work with less.



Weak supervision, caveats up front

The setup: suppose you have (at least) two mixed
samples, each composed of two classes (say g and g).

Requirement:

The two classes are well-defined i.e. g in sample 1
s statistically identical to g in sample 2).



Weak supervision, caveats up front

The two classes are well-defined (i.e. g in sample
1 Is statistically identical to g in sample 2).

This is often not exactly true, but is often nearly true.

S. Bright-Thonney and BPN, 1810.05653
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Remember this plot?

dijetS — fq X Q + (1‘fq) X G
Z+jets = gg X Q + (1-gq) X G

two equations, two unknowns (Q, G)

We often know f, @

(from ME + PDF) much better than TN
0 0.05 0.1 0.15

full radiation pattern inside jets. Track Width

This doesn’t work well when you have more than 2
observables because the templates become sparse.



Method 1: Learn from Proportions

N
Jeul = argminf’:Rn—%{O,l} Zé (f’(:vz-) —t;)

1=1
Mixed Sample 1 Mixed Sample 2

LoLiProp

Learning from
Label Proportions

Solution: Train using
class proportions. | N ' (z;)
Work “on average”  Jweak = argmin g .gn_, o 1j¢ Z N Y

1=1

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145



N.B. Don’t need 100% fraction accuracy ;

=
N
T
-
|

- gluino vs. Z+jets -
using LLP

Even though the
proportions are required
as input, if they are
slightly wrong, you can
end up with the correct
classifier.
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T. Cohen, M. Freytsis, B. Ostdiek, JHEP 02 (2018) 034



Works in low-dimensions
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Works in low-dimensions ... for g/g

Given the data/MC disagreement from the first slide, this is
what you might expect in terms of the performance difference.
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A note about training statistics
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CWola

Classification
Without Labels

Solution: Train

directly on data using

mixed samples

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51



Works in low-dimensions
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A note about training statistics
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Methods Overview

Property

LLP CWolLa

Compatible with any trainable model
No training modifications needed
Training does not need fractions
Smooth limit to full supervision
Works for > 2 mixed samples

v

~ NSNS

X
X
X
v




Next step: what about high dim.?

after Pixel Standardization

gluons

There are many O(1)-dimensional
ML problems for jets, but since
the full radiation pattern is higher
dimensional, need to go to bigger!

+

Translated Azimuthal Angle ¢

Translated Pseudorapidity 7

after Pixel Standardization

quarks
:ﬁ

Translated Pseudorapidity 7

We'll use jet Images as a
testing ground, still focusing
on quarks versus gluons.

P. Komiske, E. Metodiev, M. Schwartz, JHEP 01 (2017) 110

Translated Azimuthal Angle ¢




Some Technical Details

The CWolLa approach works out-of-the box - can use well-
tested CNN architecture with usual cross-entropy loss.

On the other hand, LLP requires signiticant work on
the technical implementation / optimization.

N 2 N
BWMSE = Z (fa — % Z h(Xz)> KWCE — Z CE (fa,, % Z h(Xz)>

a 1=1



Works in many-dimensions!
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P. Komiske, E. Metodiev, BPN, M. Schwartz, Phys. Rev. D 98, 011502(R), arXiv:1801:10158



A note about training statistics

AUC

0.87 -
0.86 -
0.85 1§
0.84 -
0.83 - /P sample 1 has f; signal &
sample 2 has 1-f; signal
0.82 - 00
0.81 - f1 =01
- f1 = 0.2
0.80 - —— ' CWoLa —— f; =023
-+-- @ LLP — £, =04
0.79 | | | |

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M
Number of Training Samples



Hybrid Approaches

As usual, it is likely that the best approach will use all of the
available information, including some input from simulation.

...this could be as simple as pre-training in MC and
then running weak supervision or actually explicitly
combining weak supervision and pivoting.

E. Metodiev and J. Thaler, Phys. Rev. Lett. 120 (2018) 241602

0.05 1 Jet Topics . .
%% Pythia 3226, ocla Tov .A N O.’[ h te Interesting

£ direction Is to push the
g L 22 dijets . . .
: T3 7+ quark weak supervision paradigm
b= VD 1 7Z+ gluon i
K CE AN o ot Topic | a step further and define

| SRR the classes so that it works.

0 20 40 60 80 100
Constituent Multiplicity



ML beyond classification

There is a lot more ML can
do than classity examples!

Classification

arbitrarily
many
categories

Regression




Simulation dependence + regression

One source of MC dependence is the same as classification:
- mis-modeling dependencies between features

However, there is a hew source:
dependence on the feature priors.

P. Komiske, E. Metodiev, M. Schwartz, JHEP 01 (2017) 110
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Simulation dependence + regression

An example that you can have in mind is jet energy calibration.
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We want to predict
the true energy given
the measured energy

(and possibly other
features - more on
that soon)

...nowever what I'm about to say applied more generally
(though the impact is biggest when the resolution is poorest)



What can go wrong?

Suppose you have some features x and you want to predict .

One way to do this is to find an f that
minimizes the mean squared error (MSE):

f =argmin, > .(g9(z;) — yi)°
Then, f(x) = E[ylx]. fun,eon can e . prove i

Why is this a problem?



What can go wrong?

f(z) = Ely|r] = | dyyp(y|z)
El[f()|y] = [ dx dy' ¥’ pirain (¥']T) Dest (2|y)

th|S need ﬂOt be yeveﬂ |f ,Uz‘ra/n — pz‘esz‘ (')



One solution: Numerical inversion

ATLAS and CMS use a trick to be prior-independent:

Numerical inversion instead of predicting y from
X, predict x from y and then invert the function

... put another way:

learn f:y » x and then for a given x, predict f-1(x)

by construction, f is independent of p(y) and thus
-1 also does not depend on p(y), as desired.

For math details, see A. Cukierman and B. Nachman, NIMA 858 (2017) 1



Caveats about numerical inversion

This procedure is independent of the prior p(y) but
may not close exactly, i.e. E[f-1(x)|y] may not be .

...under mild assumptions, it does close for the mean absolute
error, but usually has some non-closure for the MSE.

Also, the calibration procedure can distort the
underlying distribution, i.e. if you start with a Gaussian,
you almost never end up with exactly a Gaussian.

For math details, see A. Cukierman and B. Nachman, NIMA 858 (2017) 1



+ more features

The detector response of jets depends on many properties
of the jet. |deally, the calibration can include this!
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Global sequential calibration

The current ATLAS approach to including more
features is to repeat NIl sequentially:

pfreco s p\freco _ fe_nl ( . f9_21 (fgll (pfreco)) - )

ATLAS-CONF-2015-002

S D A ] ® S S T ]
& " ATLAS Simulation Preliminary | & " ATLAS Simulation Preliminary |
S 1.2 EM+JESw/o GS PYTHIA8 N S 1.2 EM+JES PYTHIA8 o Th " k
@ | anti-k, R=0.4 Il <0.3 @ | anti-k, R=0.4 Il <0.3 | 1S WOIKS
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TR 805ptTr“th<1OO GeV | 11? TN 805ptTr“th<1OO GeV | Wel | When the

350 < ptTrUth <400 GeV - TTETM 350 < ptTrUth <400 GeV

et jet response is
* * independent

of 6i given ;.

Arbitrary Units
Arbitrary Units



Machine learning calibration

For reasons discussed earlier, we can't include
correlations by learning y given x and all the 6's.

However, it would still be great to use machine
learning to automatically and efficiently make
use of correlated information.

We cannot use numerical inversion out-of-the-box
because we now have a many-to-one function.



GGeneralized numerical inversion

Since we are not (necessarily) interested in
calibrating the 0’s, we can generalize NI as follows:

(1) Learn a function f to predict x given y and all the 0's.
(2) For every combination of 6, invert 1.

(3) Calibrate via x = fg'1(x)

Step (2) is intractable, so replace it with another
learning step: predict y given f(y,0) and 0.



Consider two features:
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o1

R is the calibrated E[x|y] /y
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Only the simultaneous approach removes
the full residual dependence!
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Slightly better closure for the simultaneous calibration.
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Slightly less dependence on the origin using
the simultaneous approach.




Adding more features (with more interdependencies)
will lead to more dramatic improvements.

We can also extend this approach to calibrate other
observables and even simultaneously calibrate some of

the 0's (even more generalized NI!)

There is an interesting connection to unfolding
(see e.g. A. Glazov, 1712.01814).




Anomaly Detection

| will leave you with one last, but very exciting topic.

One of the most important goals of HEP is to search tor new
particles. However, we have not found anything
(significantly) unexpected in a while ... we need simulation-
independent ways of searching for new particles !

/

anomalies, I.e. something unexpected

N.B. The approach discussed here is not the only one - see also M. Farina, Y.
Nakai, D. Shih, 1808.08992 & T. Heimel, G. Kasieczka, T. Phlen, J. Thompson,
1808.08979 for an alternative approach based on auto-encoders.



Remember CWola ...

Mixed Sample 1 Mixed Sample 2

( ..)
’

CWola

Classification
Without Labels

Solution: Train

directly on data using

mixed samples

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51



Can we take this
idea one step further
to look for something

unexpected?

= CWolLa Hunting”
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Minimal assumption: if there is a signal, it

IS localized in one known dimension.

*Image from this article. This Koala is actually being freed - | do not condone violence against these animals!


http://www.couriermail.com.au/news/rescued-koala-found-without-head-and-testicles-in-trophy-hunter-attack-on-sunshine-coast/news-story/fcf69786a8d9e2d4add2abbb6c0c762d

Weak/unsupervised learning for anomalies

A

J. Collins, K. Howe, BPN, 1805.02664
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It there is a signal, there will be something to learn and
the signal will be enhanced. If no signal, nothing to learn.



Weak/unsupervised learning for anomalies

A

Need to be careful about testing/training on the same data.
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Using a classifier trained to distinguish a signal region from a
sideband, make progressively harsher cuts on the NN output



CWoLa hunting vs. Full Supervision
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It you know what you are looking for, you should look for it. If
you don’t know, then CWolLa hunting may be able to catch it!



Review of CWoLa hunting

(1) Need an observable X (e.g. myy) where the
signal is localized and the background is not.

(2) ldentify features Y (e.q. jet substructure) that
are ~independent of X, but can be useful for
identitying a broad range of new particles.

actually, we don't need independence, we just
need them to not allow us to sculpt bumps.
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e Simulation dependence in traditional ML4HE

e Classification
4+ Adversarial approaches
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Conclusions and Outlook

Deep learning is a powerful tool for enhancing
data analysis. However, it is crucial to know when
and where we depend on prior knowledge.

Mitigating/reducing dependence on priors can improve
performance and may even help us to understand
something new and fundamental about nature!
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