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Machine Learning with Less
 or no Simulation Dependence

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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• Simulation dependence in traditional ML4HEP 

• Classification 

✦ Adversarial approaches 

✦ Weak supervision 

• Regression 

• Anomaly Detection
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HEP Simulations

Disclaimer: Our simulations are 

excellent and contain a lot of deep 

physics.  However, they are only an 

approximation to nature so we must be 

careful when deep learning with them!



High Energy Physics at the LHC

“jet”

“jet”

Today, I’m going to use jets 
as my prototypical example.
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ATLAS
Discriminant for Data-Driven Tagger

 = 7 TeVs, -1 L dt = 4.7 fb∫
| < 0.8η R=0.4, |tanti-k

<210 GeV
T

160 GeV<p

Usual paradigm: train in simulation, validate on data, test on data.

If data and simulation differ, this is sub-optimal!

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data
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Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

Recall: optimal classifier 
(by Neyman-Pearson NP) 
is a threshold cut on the 

likelihood ratio.

For a 2D feature space, no need 
for a NN or BDT - can use a 

histogram to “train” the classifier.

h(ntrk, Track Width) → [0,1]

Usual paradigm: train in simulation, validate on data, test on data.

Background and Motivation
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quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

For a 2D feature space, no need 
for a NN or BDT - can use a 

histogram to “train” the classifier.

h(ntrk, Track Width) → [0,1]

h
dN

/d
h

quarks gluons

Usual paradigm: train in simulation, validate on data, test on data.

Background and Motivation
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quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

For a 2D feature space, no need 
for a NN or BDT - can use a 

histogram to “train” the classifier.

hMC(ntrk, Track Width) → [0,1]

hMC
dN

/d
h

quarks gluons

Usual paradigm: train in simulation, validate on data, test on data.
Fixed 

working 
point

Background and Motivation
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quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in dataclassifier hMC

dN
/d

h

quarks gluons

Usual paradigm: train in simulation, validate on data, test on data.
Fixed 

working 
point

WP in simulation:  
esignal,MC, eback,MC

Background and Motivation
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Usual paradigm: train in simulation, validate on data, test on data.

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

Determine the performance 
of the WP in data.

How did we get this? Q

dN
/d

h
classifier hMC

G

MC
data

dijets = fq x Q + (1-fq) x G
Z+jets = gq x Q + (1-gq) x G

2 equations, 2 unknowns (Q, G)

(N.B. f & g from simulation and selection can’t bias Q and G - more on that later)

two event samples with 
different q/g fractions

Background and Motivation
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Usual paradigm: train in simulation, validate on data, test on data.

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

Determine the performance 
of the WP in data.

How did we get this? Q

dN
/d

h
classifier hMC

G

MC
data

dijets = fq x Q + (1-fq) x G
Z+jets = gq x Q + (1-gq) x G

2 equations, 2 unknowns (Q, G)
WP in data:  

esignal,data, eback,data

Can correct the MC to have the same performance as data.

Background and Motivation
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Usual paradigm: train in simulation, validate on data, test on data.

Once we have scale factors (& their uncertainty), we 
can ensure that our analysis will be accurate. 

If data and simulation differ, this is sub-optimal!

…so what is the problem?

remember my claim from earlier:

This is an accuracy versus precision problem.  It is 
“easy” to achieve accuracy through calibration, but the 

results may not be the best one possible.

Background and Motivation
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In this 2D feature space, we can actually derive hdata.

Eur. Phys. J. C 74 (2014) 3023

quark gluonquark vs gluon 
jets in simulation

quark gluonquark vs gluon 
jets in data

dijets = fq x Q + (1-fq) x G

Z+jets = gq x Q + (1-gq) x G

2 equations, 2 unknowns (Q, G)

Using the same trick as earlier:

(now Q and G are 2D histograms)

hMC(ntrk, Track Width) = hdata(ntrk, Track Width)
in general:

Background and Motivation
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To stress this point, suppose that hMC is the 
random classifier:

hMC = 0 if you pick a random number x in [0,1] and x < e
1 otherwise

true positive

fa
ls

e 
po

si
tiv

e
We can calibrate this 
classifier in data, but 

clearly, it is sub-optimal !!



�15One more slide about why it matters 5

Figure 3: This figure shows the W-jet image di↵erences
between the default PYTHIA shower and the alternate VINCIA

shower in PYTHIA (top left), the default SHERPA shower (top
right), the default HERWIG angular shower (bottom left) and
the HERWIG dipole shower (bottom right). The plots have been
individually normalised.

To gain an understanding of the systematic uncer-
tainties in using networks trained on simulated data,
we study the behaviour of networks across a variety of
di↵erent generators and parton showers which all provide
an adequate description of current LHC data. We assume
that given a number of di↵erent ROC curves derived from
di↵erent generators and parton showers, the envelope of
these curves provides an approximate uncertainty band
associated with training the network on simulated, rather
than real, data.

Recently, Ref. [48] has studied parton shower uncer-
tainties in HERWIG 7. They divide the uncertainties into
a number of classes: numerical, parametric, algorithmic,
perturbative and phenomenological. Numerical uncer-
tainties can be decreased by increasing the number of
events, while parametric uncertainties are those external
to the MC generator: masses, couplings, PDFs and
so forth. The focus of our work in this section is on
algorithmic uncertainties, those due to di↵erent choices
of parton shower algorithm. The authors of Ref. [48]
focus on perturbative and phenomenological uncertain-
ties, which are from truncation of expansion series and
parameters deriving from non-perturbative models. Our
work is more in the spirit of the ‘Towards parton shower
variations’ contribution to the 2015 SM Les Houches
Proceedings [49]. Previous studies also exist within the
HERWIG framework on the implications of MC uncer-
tainties on jet substructure in the context of Higgs
searches [50].

We generate background and signal events with

three of the most widely used MC generators:
PYTHIA 8.219 [41], SHERPA 2.0 [51, 52] and HERWIG 7.0 [53,
54]. For PYTHIA 8 we study both the default shower
and the VINCIA shower [55, 56], and for HERWIG we
include both the default (angular ordered) and dipole
showers [57, 58], giving us five di↵erent parton shower
models to study.
The default HERWIG shower (known as QTilde) is based

on 1 ! 2 splittings using the DGLAP equations, with
an angular ordering criterion [59]. The SHERPA shower is
based on a Catani-Seymour dipole formalism [60]. In this
case one particle of the dipole is the emitter which under-
goes the splitting, while the other is a spectator which
compensates for the recoil from the splitting and ensures
that all particles remain on their mass-shells throughout
the shower, leading to easier integration with matching
and merging techniques. The default shower in PYTHIA 8
is also a dipole style shower [61], ordered in transverse
momentum.
While parton showers have traditionally been based

upon partonic DGLAP splitting functions, another possi-
bility is to consider colour-connected parton pairs which
undergo 2 ! 3 branchings (note that this is distinct
from Catani-Seymour dipoles used in SHERPA, where one
parton is still an emitter, and the other recoils). In
these so-called antenna showers, the 2-parton antenna
is described with a single radiation kernel. This has the
advantage, for instance, of explicitly including both the
soft and collinear limits. We use the recently released
VINCIA [55, 56] plug-in for PYTHIA 8 as a representative
antenna shower.
These event generators also provide di↵erent treat-

ments of the soft radiation from the underlying event
which accompanies each hard partonic scattering. They
also possess di↵erent implementations of the parton-to-
hadron fragmentation process being based either around
cluster fragmentation ideas (HERWIG and SHERPA) or the
Lund string model (PYTHIA), giving us a wide range of
QCD-related e↵ects to probe. To incorporate detector
e↵ects such as smearing we pass all events through
the Delphes 3 detector simulator [42]. In the studies
presented here, our baseline shower is PYTHIA 8 with its
default settings.
We construct average jet images for all five di↵erent

generators and showers under investigation, and then
subtract the default PYTHIA average jet image in order
to see the di↵erences in the average radiation patterns.
The results are shown in Fig. 3 for the W-jet signal. We
have normalised the intensity di↵erences of the pixels so
that red indicates a region of excess and blue a deficit
relative to the PYTHIA default. While the VINCIA is
roughly similar to the PYTHIA default, the SHERPA and
HERWIG dipole showers exhibit more intense radiation in
the resolved subjets and a substantial deficit in the region
between the subjets. The HERWIG angular shower shows
the opposite, with less radiation in the subjet cores and
more di↵use radiatioon. QCD radiation exhibits similar
features.

Especially important for 
deep learning using subtle 
features → hard to model!

W boson radiation 
pattern - same physics, 

different simulators!
J. Barnard, E. Dawe, M. Dolan, N. Rajcic, 

Phys. Rev. D 95 (2017) 014018



�16Achieving the Optimal Classifier

Two ways around the problems mentioned earlier:

(1) Derive the classifier in MC, but don’t let it use 
information that is not present in data. 

(2) Train on unlabeled data.

“Weak supervision”

“Learning to pivot”
G. Louppe, M. Kagan, K. Cranmer, 1611.01406

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145 
E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 174
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Two ways around the problems mentioned earlier:

(1) Derive the classifier in MC, but don’t let it use 
information that is not present in data. 

(2) Train on unlabeled data.

“Weak supervision”

“Learning to pivot”
G. Louppe, M. Kagan, K. Cranmer, 1611.01406

L. Dery, BPN, F. Rubbo, A. Schwartzman, JHEP 05 (2017) 145 
E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 174Disclaimer: I’ll 

spend most 

of my time discussing this

Ask Gilles if you have 

questions about pivoting!



�18Pivoting

A clever idea is to build in robustness to the loss function:

Loss = usual loss - l x adversarial loss

e.g. binary cross-entropy 
using per-instance labels 

from simulation.

can the output of the 
classifier tell if it is 

looking at data or MC?
i.e. if h is the classifier, 

using h(x) as a feature, try 
to classify data versus MC.

hyperparmeter



�19When pivoting is “optimal” in data

Useful 
information 

in simulation
Useful 

information 
in data

I’ll show some pictures to 
give you some intuition. 

In this case, the 
adversary ensures 
that the classifier 

can’t use information 
from simulation that 
is actually not useful 

in data.  

(could be a 
truth bit!)
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Useful 
information 

in simulation

Useful 
information 

in data

When pivoting is “suboptimal” in data

(could be a 
truth bit!)

The simulation 
can’t use what it 

doesn’t know.

…many other applications of this approach, such as reducing sensitivity to 
systematic uncertainties, unwanted correlations between features, etc. 



�21Another possibility: Learn from data!

One of the biggest challenges with any MC-based method is 
that it can’t use information that the MC doesn’t know about.

One solution is to train directly on data !

In general, this is not possible since data are 
unlabeled. However, in a wide range of cases, it 

is possible to work with less. 

There is an interesting connection between what I’m calling 
“weak supervision” and the topic of “label noise”.  



�22Weak supervision, caveats up front

The setup: suppose you have (at least) two mixed 
samples, each composed of two classes (say q and g).

Requirement:

The two classes are well-defined i.e. q in sample 1 
is statistically identical to q in sample 2).
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Figure 3. Classifier separation power � of the five di↵erent generalized angularities for (a) quark
jets in di↵erent topologies, (b) gluon jets in di↵erent topologies, and (c) quark vs. gluon jets within
a single topology. The plot in (c) provides benchmark values of � in a scenario where separation is
expected, and the results in (a) and (b) can be compared against it. Error bars represent statistical
uncertainty.
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Figure 3. Classifier separation power � of the five di↵erent generalized angularities for (a) quark
jets in di↵erent topologies, (b) gluon jets in di↵erent topologies, and (c) quark vs. gluon jets within
a single topology. The plot in (c) provides benchmark values of � in a scenario where separation is
expected, and the results in (a) and (b) can be compared against it. Error bars represent statistical
uncertainty.
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The two classes are well-defined (i.e. q in sample 
1 is statistically identical to q in sample 2).

This is often not exactly true, but is often nearly true.

S. Bright-Thonney and BPN, 1810.05653
2.3 Quantifying separation power

Since several variables are studied across multiple topologies, it is most e�cient to quantify

separation power using a single number. As in Ref. [15], the classifier separation provides a

quantitative summary statistic [47, 48]4,

�(�) =
1

2

Z
d�

(p1(�)� p2(�))2

p1(�) + p2(�)
, (2.4)

where p1/2(�) is the probability distribution for a jet of some flavor (quark or gluon) as a

function of the classifier � (in this case, � is a generalized angularity). The separation �

ranges from 0 (no separation) to 1 (full separation). The distributions p1(�) and p2(�) are

equal if and only if �(�) = 0. As 0  �  1, the classifier separation will often be referred

to as a percentage (i.e. � = 0 is equivalent to 0% separated).

3 Baseline analysis

In the baseline study, the behavior of angularities in quark and gluon jets from six di↵erent

topologies in pp collisions is investigated:

1. Dijets

2. Z+jets

3. gg ! Hg

4. qq̄ ! Zg

5. H ! gg

6. H ! qq̄.

Samples of one million events are generated for each topology using PYTHIA 8.226 [55] with

the Monash 2013 tune [56], a center-of-mass energy of 13 TeV, and a p̂T range of 45  p̂T  200

GeV. Jets are clustered using FASTJET 3.2.1 [57] with the anti-kt algorithm [58] using E-

scheme recombination. Quark and gluon jets are identified using the procedure described

in Sec. 2. In order to avoid sculpting from the p̂T requirement, jets are only considered if

50 < pT < 150 GeV; to emulate the acceptance of typical tracking detectors, jets must be

within |⌘| < 2.0. In order to study the a↵ect of jet radius on separation power, samples

are generated for each topology with jet radii in the range 0.2  R  1.5 in steps of 0.1.

In samples 2–4, the Higgs and Z bosons are forced to decay into neutrinos, preventing any

hadronic or leptonic decay products from interfering with other jets in the event. The masses

4
In the language of information theory, this is closely related to the �2

divergence; both are f -

divergences [49–51] with f(u) = (u � 1)

2/(u + 1) for the classifier separation and f(u) = (u � 1)

2
for the

�2
divergence [52, 53]. We are grateful to Ben Elder, who pointed out to us that this quantity has also been

referred to as the triangular discriminator in the information theory literature [54].
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parameterizes jet features

upshot: quarks & gluons 
are much more different 
than quarks & quarks or 

gluons & gluons!



�24Weak sup. option 1: Use class proportions
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jets in data

Remember this plot?

dijets = fq x Q + (1-fq) x G
Z+jets = gq x Q + (1-gq) x G

two equations, two unknowns (Q, G)

We often know f, g  
(from ME + PDF) much better than 

full radiation pattern inside jets.

This doesn’t work well when you have more than 2 
observables because the templates become sparse.
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Solution: Train using 
class proportions.  
Work “on average”

Learning from 
Label Proportions

two classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.5 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`

 
NX

i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

j

is su�cient to collapse the solution space, so long as the distribution p(~x|i; j) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch j. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.

– 2 –

two classes. In the traditional classification paradigm of fully supervised training, the function ffull is
built by minimizing a loss function like the following:

ffull = argmin
f

0:Rn!{0,1}

NX

i=1

` (f 0(x
i

)� t

i

) , (2.1)

where N is the number of labeled data available for training, ` is a loss function with lim
x!0 `(x) = 0,

and t

i

is the true label of example i. A common loss function is the squared error. In order to
provide flexibility and stability, one often modifies the original problem to take f : Rn ! [0, 1] and the
output is interpreted as a probability for an event to be in class 0 or 1. The ideal classifier that one
tries to approximate with Eq. 2.5 is based on the likelihood ratio p(~x|0)/p(~x|1), where p(~x|i) is the
n-dimensional probability density for the feature vector ~x for the class i 2 {0, 1}. Weakly supervised

classification is a new paradigm in which instead of knowing the t
i

, all that is known is the proportion
of events in either class: y =

P
i

t

i

/N . Thus, the weakly supervised fweak is given by

fweak = argmin
f

0:Rn![0,1]`

 
NX

i=1

f

0(x
i

)

N

� y

!
. (2.2)

The argument of Eq. 2.2 is non-convex, with many minima. In particular, the trivial solution f

0(x) =
y results in a loss of zero. However, using multiple batches of data with di↵erent proportions y

j

is su�cient to collapse the solution space, so long as the distribution p(~x|i; j) = p(~x|i), i.e. the
distribution of the discriminating features for a particular class is the same in every batch j. To build
intuition for why there is any hope to solve this problem, consider a case where there are two batches
A and B with proportions y

A

and y

B

. Consider an n-dimensional histogram where the i

th dimension
captures a discretized version of the i

th discriminating feature. If the i

th dimension has m
i

bins, then
the total number of bins in the histogram is M =

P
n

i=1 mi

. One can always rearrange bins so that
instead of an n-dimensional histogram with m

i

bins in the i

th dimension, there is a one-dimensional
histogram with M bins. As visualizing high dimensional histograms can be cumbersome, let h

A

be
one-dimensional histograms with M bins for the batch A and h

B

be the corresponding histogram for
batch B. Then, for each bin i, one can write

h

A,i

= y

A

h1,i + (1� y

A

)h0,i (2.3)

h

B,i

= y

B

h1,i + (1� y

B

)h0,i, (2.4)

where h
X,i

is the content of the ith bin of the histogram h

X

. Except for contrived scenarios, Eq. 2.3 will
have a unique solution for h0,i and h1,i, which are discretized versions of the probability densities p(~x|0)
and p(~x|1). One can then form an (approximately) optimal classifier from the ratio of histograms with
bin contents h0,i/h1,i. If the number of dimensions is large, one can add a further step to use machine
learning to approximate the optimal classifier from h0,i and h1,i. As a result, the problem is completely
solvable. Weakly supervised training combines the classification step with the first step and does so
without binning. Solving Eq. 2.3 ‘by-hand’ is intractable when n is relatively large or the number
of examples is relatively small. It is also complicated when there are more than two batches (over-
constrained). These challenges are all naturally handled by the all-in-one machine learning approach
of weakly supervised classification, as illustrated below.

– 2 –

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ������ �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ������ �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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of Fig. 9 show the di↵erential cross sections as a function of the missing energy. The

dashed lines represent the distributions before making the cuts, while the solid lines

are after the cut is made. We see that both networks gain their separating power by

cutting out background with relatively small amounts of missing energy.

5.2 Mismodeling

Armed with these concrete comparisons between weakly and fully supervised net-

works, we will explore an example of mismodeling that would lead to a change in

the fraction labels provided at the training step. In particular, we will see that for

the class of mismodeling e↵ects we study here, the performance of a fully supervised

network degrades, while the weakly supervised networks remain robust.

In order to mock up the e↵ects of this mismodeling, we take the original set of

training and validation events and use the fully supervised network to classify them.

Two tests are then performed and their results are presented in Fig. 10. In the first,

15% of the signal events are chosen at random and artificially mislabeled as back-

ground (left panel). In the second, we perform a phase space swap. Specifically, we

change the labels between the most-signal like 10% of the background events and

the most background-like 15% of the signal events (right panel). These two tests

alter the fractions used for the weakly supervised classification. They simultaneously

change the underlying missing energy and jet momentum distributions for the train-

ing samples in di↵erent ways. The events are then split into subgroups as was done

Figure 10: ROC curves showing the response of the network to mismodeled data. The

mismodeling in the left panel shows the results of taking a random 15 % of the signal

events and labeling them as background before training. The right panel demonstrates

what happens under a phase space swap, where we mislabel the 10% most signal-like

background event and the 15% most background-like signal events. The fully supervised

network trained on the mislabeled data performs much worse at small false positive rates

than when the data is not mislabeled. The weakly supervised network does not rely on

individual event labels, and therefore has essentially no change in performance.

– 22 –

of Fig. 9 show the di↵erential cross sections as a function of the missing energy. The

dashed lines represent the distributions before making the cuts, while the solid lines

are after the cut is made. We see that both networks gain their separating power by

cutting out background with relatively small amounts of missing energy.

5.2 Mismodeling

Armed with these concrete comparisons between weakly and fully supervised net-

works, we will explore an example of mismodeling that would lead to a change in

the fraction labels provided at the training step. In particular, we will see that for

the class of mismodeling e↵ects we study here, the performance of a fully supervised

network degrades, while the weakly supervised networks remain robust.

In order to mock up the e↵ects of this mismodeling, we take the original set of

training and validation events and use the fully supervised network to classify them.

Two tests are then performed and their results are presented in Fig. 10. In the first,

15% of the signal events are chosen at random and artificially mislabeled as back-

ground (left panel). In the second, we perform a phase space swap. Specifically, we

change the labels between the most-signal like 10% of the background events and

the most background-like 15% of the signal events (right panel). These two tests

alter the fractions used for the weakly supervised classification. They simultaneously

change the underlying missing energy and jet momentum distributions for the train-

ing samples in di↵erent ways. The events are then split into subgroups as was done

Figure 10: ROC curves showing the response of the network to mismodeled data. The

mismodeling in the left panel shows the results of taking a random 15 % of the signal

events and labeling them as background before training. The right panel demonstrates

what happens under a phase space swap, where we mislabel the 10% most signal-like

background event and the 15% most background-like signal events. The fully supervised

network trained on the mislabeled data performs much worse at small false positive rates

than when the data is not mislabeled. The weakly supervised network does not rely on

individual event labels, and therefore has essentially no change in performance.

– 22 –

T. Cohen, M. Freytsis, B. Ostdiek, JHEP 02 (2018) 034

gluino vs. Z+jets 
using LLP

Even though the 
proportions are required 

as input, if they are 
slightly wrong, you can 
end up with the correct 

classifier. 
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�28Works in low-dimensions … for q/g

results that mention quark/gluon tagging, but there many more analyses that would benefit from a
tagger if a robust technique existed.

The weakly supervised classification strategy is particularly useful for quark/gluon tagging because
the fraction of quark jets for a particular set of events is well-known from parton distribution functions
and matrix element calculations while useful discriminating features have not been computed to high
accuracy and simulations often mis-model the data. To illustrate this concrete example, quark and
gluon jets are simulated and a weakly supervised classifier is trained on the generated event sample.
Unlike real data, in the simulated sample, we also know per-event labels which are used to additionally
train a fully supervised classifier. Events with 2 ! 2 quark-gluon scattering (dijet events) are simulated
using the Pythia 8.18 [16] event generator. Jets are clustered using the anti-k

t

algorithm [17] with
distance parameter R = 0.4 via the FastJet 3.1.3 [18] package. Jets are classified as quark- or gluon-
initiated by considering the type of the highest energy quark or gluon in the full generator event
record that is inside a 0.3 radius of the jet axis. For simplicity, one transverse momentum range is
considered: 45 GeV < pT < 55 GeV. Additionally, there is a pseudo-rapidity requirement that mimics
the usual detector acceptance for charged particle tracking: |⌘| < 2.1. Heuristically, gluons have twice
as much strong-force charge as quark jets, resulting in more constituents and a broader radiation
pattern. Therefore, the following variables are useful for quark/gluon discrimination: the number of
jet constituents n, the first radial moment in pT (jet width) w, and the fraction of the jet pT carried
by the leading anti-kT R = 0.1 subjet f0. The constituents i considered for computing n and w are
the hadrons in the jet with pT > 500 MeV.

(a) (b)

Figure 3: Comparison of ROC curves for quark/gluon jet discrimination using a fully supervised clas-
sifier or a weakly supervised classifier. In (a) the fully and weakly supervised classifiers are trained on
identical simulated data and evaluated on a test sample drawn from the same population. The weakly
supervised classifier matches the performance of the fully supervised one. The curves corresponding
to the three input observables used as discriminant are shown as reference. In (b), the fully supervised
classifier (blue line) is trained on a labeled simulated training sample. The weakly supervised classifier
(red line) is trained on an unlabeled pseudo-data training sample. In both cases, the performance is
evaluated on the same pseudo-data test sample. The ratios to the performance of a fully supervised
classifier trained on a labeled pseudo-data sample are shown in the bottom pad.

A weakly supervised classifier with one hidden layer of size 30 is trained by considering 12 bins
of the distribution of the absolute di↵erence in pseudorapidity between the two jets [19]. The propor-
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Given the data/MC disagreement from the first slide, this is 
what you might expect in terms of the performance difference.
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�29A note about training statistics

Note that the loss for weakly supervised classification is symmetric with respect to swapping the class
assignment, therefore the classifier output for a given training can give higher values for class 0, while
for a di↵erent training it would give higher value for class 1.

As with any machine learning algorithm with inherent randomness, the performance of a weakly
supervised classifier has a stochastic component. This is quantified by retraining the same network
many times with di↵erent random number seeds in each iteration. The interquartile range (IQR)
over the Area Under the Curve (AUC) values for each training is a measure of the spread due to the
inherent randomness. Figure 2 shows the AUC IQR for the toy example with one proportion fixed
to 0.2 and the second proportion scanned from 0.2 to 0.7. The stability improves as the di↵erence
between the class proportions increases. In addition to the performance varying less as the proportions
are further apart, the overall performance quantified by the median AUC (denoted by hAUCi) also
improves (increases). The improvement in the median AUC is not as dramatic as the reduction in
the AUC IQR, but it does suggest that it is (slightly) easier for the machine learning algorithm when
the proportions are very di↵erent2. This makes sense in the context of the two-step intuition-building
paradigm given above: the algorithm can spend more attention on the classification task if it is easier
to extract the class distributions.

Figure 2: Median (solid triangles) and interquartile range (solid dots) of the AUC as a function
of the di↵erence in proportions �y between the two subsets of the training sample. The proportion
corrisponding to one subset is fixed to 0.2, while the other varies. For each point the AUC is com-
puted 100 times on the same test set with di↵erent trainings, each performed with a random weight
initialization. The maximum AUC for each point is also shown (hollow triangles).

3 Example: quark and gluon jet discrimination

Due to the strength of the strong force, there is a plethora of gluon jets produced at the LHC.
However, many processes result in mostly quark jets. Prominent examples include the identification of
hadronically decaying W bosons [10, 11], jets associated with vector boson fusion [12–14], and multi-
quarks resulting from supersymmetry [15]. The references given here are the small number of public

2
Even when the proportions are within few percents, stable performance can be achieved if multiple (> 2) subsets

with di↵erent proportions can be used for training.
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1
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f
2
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2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.
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A note about training statistics

As with LLP, need 
sufficient effective 

statistics

Can’t learn when 
the two proportions 

are the same.
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2

complex models with high-dimensional inputs. As a
concrete illustration, we use an image representation
to distinguish the radiation pattern from high energy
quarks from gluons (“jet images” [2]). Convolutional
neural networks (CNNs) are applied to the quark and
gluon jet images, where the dimensionality of the inputs
is O(1000) and simulation mis-modeling issues are a
challenge [26, 39–43]. We find that CWoLa more robustly
generalizes to learning with high-dimensional inputs than
LLP, with the latter requiring careful engineering choices
to achieve comparable performance. Though we use
a particle physics problem as an example, the lessons
about learning from data using mixtures of signal and
background are applicable more broadly.

We begin by establishing some notation and formulat-
ing the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, x might be
the momenta of observed particles, calorimeter energy
deposits, or a complete set of observables [7, 8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background.
Then the fully supervised model is trained to predict the
correct labels for each training example by minimizing
a loss function. For a su�ciently large training set,
an appropriate model parameterization, and a suitable
minimization procedure, the learned model should ap-
proach the optimal classifier defined by thresholding the
likelihood ratio.

Data collected from a real detector do not come with
signal/background labels. Instead, one typically has two
or more mixtures Ma of signal and background with
di↵erent signal fractions fa, such that the distribution
of the features, pMa(x), is given by:

pMa(x) = fa pS(x) + (1 � fa) pB(x), (1)

where pS and pB are the signal and background distri-
butions, respectively. Weak supervision assumes sample

independence, that Eq. 1 holds with the same distribu-
tions pS(x) and pB(x) for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table II below).

LLP uses any fully supervised classification method
and modifies the loss function to globally match the sig-
nal fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The
batch size, which for LLP we define as the number of
samples drawn from each mixture during one update of
the model, is a critical hyperparameter of LLP.

The loss functions we use for LLP di↵er from those in
Ref. [36]. Analogous to the mean squared error (MSE)
loss function for fully supervised (or CWoLa) training,

Property LLP CWoLa

Compatible with any trainable model 3 3
No training modifications needed 7 3
Training does not need fractions 7 3
Smooth limit to full supervision 7 3
Works for > 2 mixed samples 3 ?

TABLE I. The essential pros (3), cons (7), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

we introduce the weak MSE (WMSE) loss for the LLP
framework:

`WMSE =
X

a

 
fa � 1

N

NX

i=1

h(xi)

!2

, (2)

where N is the batch size, a indexes the mixed samples,
and h is the model. Analogous to the crossentropy, we
also introduce the weak cross entropy (WCE) loss:

`WCE =
X

a

CE

 
fa,

1

N

NX

i=1

h(xi)

!
, (3)

where CE(a, b) = �a log b�(1�a) log(1�b). One caveat
we discovered while exploring LLP is that the range of
h(x) must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe
the e↵ect of model outputs becoming e↵ectively binary at
0 and 1, necessitating additional care to avoid numerical
precision issues.

CWoLa classifies two mixtures, M1 and M2, from each
other using any fully supervised classification method.
The resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier
trained on pure samples [37, 45, 46]. CWoLa does not
require that the fractions fa are known for training (the
fractions on smaller test sets can be used to calibrate the
classifier operating points). The CWoLa framework has
the nice property that as the samples approach complete
purity (f1 ! 0, f2 ! 1) it smoothly approaches the fully
supervised paradigm. CWoLa presently only works with
two mixtures; if more than two are available they can
be pooled at the cost of diluting their purity. The key
features of CWoLa and LLP are compared in Table I.
Note that no learning is possible with either method as
f1 ! f2.

To explore weak supervision methods with high-
dimensional inputs, we simulate Z + q/g events at

p
s =

13 TeV using Pythia 8.226 [47] and create artificially
mixed samples with various quark (signal) fractions.
Jets with transverse momentum pjet

T 2 [250, 275] GeV
and rapidity |y|  2.0 are obtained from final-state,
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Figure 1: The average jet images for 200 GeV Pythia gluon jets (top) and quark jets

(bottom) shown after normalization (left) and after the zero-centering and standardization

(right). Di↵erent linear color scales are used to highlight the important features of each step.

On the left the quark jets have more intensity in the five core pixels whereas the gluon jets are

wider. On the right, the standardization procedure illustrates that quark jets are narrower

and emphasizes the softer outer radiation.

3.2 Network architecture

The deep convolutional network architecture used in this study consisted of three iterations

of a convolutional layer with a ReLU activation and a maxpooling layer, all followed by

a dense layer with a ReLU activation. To predict a binary classification between quarks

and gluons, an output layer of two units with sigmoid activation is fully connected to the

final dense hidden layer. An illustration of the architecture used is shown in Figure 2. The

dropout rate was taken to be 0.25 after the first convolutional layer and 0.5 for the remaining

layers, with spatial dropout (drop entires feature maps) used in the convolutional layers. Each

convolutional layer consisted of 64 filters, with filter sizes of 8⇥8, 4⇥4, and 4⇥4, respectively.

– 7 –

gluons

quarks

There are many O(1)-dimensional 
ML problems for jets, but since 

the full radiation pattern is higher 
dimensional, need to go to bigger!

We’ll use jet images as a 
testing ground, still focusing 

on quarks versus gluons.
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The CWoLa approach works out-of-the box - can use well-
tested CNN architecture with usual cross-entropy loss.

On the other hand, LLP requires significant work on 
the technical implementation / optimization.
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complex models with high-dimensional inputs. As a
concrete illustration, we use an image representation
to distinguish the radiation pattern from high energy
quarks from gluons (“jet images” [2]). Convolutional
neural networks (CNNs) are applied to the quark and
gluon jet images, where the dimensionality of the inputs
is O(1000) and simulation mis-modeling issues are a
challenge [26, 39–43]. We find that CWoLa more robustly
generalizes to learning with high-dimensional inputs than
LLP, with the latter requiring careful engineering choices
to achieve comparable performance. Though we use
a particle physics problem as an example, the lessons
about learning from data using mixtures of signal and
background are applicable more broadly.

We begin by establishing some notation and formulat-
ing the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, x might be
the momenta of observed particles, calorimeter energy
deposits, or a complete set of observables [7, 8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background.
Then the fully supervised model is trained to predict the
correct labels for each training example by minimizing
a loss function. For a su�ciently large training set,
an appropriate model parameterization, and a suitable
minimization procedure, the learned model should ap-
proach the optimal classifier defined by thresholding the
likelihood ratio.

Data collected from a real detector do not come with
signal/background labels. Instead, one typically has two
or more mixtures Ma of signal and background with
di↵erent signal fractions fa, such that the distribution
of the features, pMa(x), is given by:

pMa(x) = fa pS(x) + (1 � fa) pB(x), (1)

where pS and pB are the signal and background distri-
butions, respectively. Weak supervision assumes sample

independence, that Eq. 1 holds with the same distribu-
tions pS(x) and pB(x) for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table II below).

LLP uses any fully supervised classification method
and modifies the loss function to globally match the sig-
nal fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The
batch size, which for LLP we define as the number of
samples drawn from each mixture during one update of
the model, is a critical hyperparameter of LLP.

The loss functions we use for LLP di↵er from those in
Ref. [36]. Analogous to the mean squared error (MSE)
loss function for fully supervised (or CWoLa) training,

Property LLP CWoLa

Compatible with any trainable model 3 3
No training modifications needed 7 3
Training does not need fractions 7 3
Smooth limit to full supervision 7 3
Works for > 2 mixed samples 3 ?

TABLE I. The essential pros (3), cons (7), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

we introduce the weak MSE (WMSE) loss for the LLP
framework:

`WMSE =
X

a

 
fa � 1

N

NX

i=1

h(xi)

!2

, (2)

where N is the batch size, a indexes the mixed samples,
and h is the model. Analogous to the crossentropy, we
also introduce the weak cross entropy (WCE) loss:

`WCE =
X

a

CE

 
fa,

1

N

NX

i=1

h(xi)

!
, (3)

where CE(a, b) = �a log b�(1�a) log(1�b). One caveat
we discovered while exploring LLP is that the range of
h(x) must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe
the e↵ect of model outputs becoming e↵ectively binary at
0 and 1, necessitating additional care to avoid numerical
precision issues.

CWoLa classifies two mixtures, M1 and M2, from each
other using any fully supervised classification method.
The resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier
trained on pure samples [37, 45, 46]. CWoLa does not
require that the fractions fa are known for training (the
fractions on smaller test sets can be used to calibrate the
classifier operating points). The CWoLa framework has
the nice property that as the samples approach complete
purity (f1 ! 0, f2 ! 1) it smoothly approaches the fully
supervised paradigm. CWoLa presently only works with
two mixtures; if more than two are available they can
be pooled at the cost of diluting their purity. The key
features of CWoLa and LLP are compared in Table I.
Note that no learning is possible with either method as
f1 ! f2.

To explore weak supervision methods with high-
dimensional inputs, we simulate Z + q/g events at

p
s =

13 TeV using Pythia 8.226 [47] and create artificially
mixed samples with various quark (signal) fractions.
Jets with transverse momentum pjet

T 2 [250, 275] GeV
and rapidity |y|  2.0 are obtained from final-state,
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complex models with high-dimensional inputs. As a
concrete illustration, we use an image representation
to distinguish the radiation pattern from high energy
quarks from gluons (“jet images” [2]). Convolutional
neural networks (CNNs) are applied to the quark and
gluon jet images, where the dimensionality of the inputs
is O(1000) and simulation mis-modeling issues are a
challenge [26, 39–43]. We find that CWoLa more robustly
generalizes to learning with high-dimensional inputs than
LLP, with the latter requiring careful engineering choices
to achieve comparable performance. Though we use
a particle physics problem as an example, the lessons
about learning from data using mixtures of signal and
background are applicable more broadly.

We begin by establishing some notation and formulat-
ing the problem. Let x represent a vector of observables
(features) useful for discriminating two classes we call
signal (S) and background (B). For example, x might be
the momenta of observed particles, calorimeter energy
deposits, or a complete set of observables [7, 8]. In fully
supervised learning, each training sample is assigned a
truth label such as 1 for signal and 0 for background.
Then the fully supervised model is trained to predict the
correct labels for each training example by minimizing
a loss function. For a su�ciently large training set,
an appropriate model parameterization, and a suitable
minimization procedure, the learned model should ap-
proach the optimal classifier defined by thresholding the
likelihood ratio.

Data collected from a real detector do not come with
signal/background labels. Instead, one typically has two
or more mixtures Ma of signal and background with
di↵erent signal fractions fa, such that the distribution
of the features, pMa(x), is given by:

pMa(x) = fa pS(x) + (1 � fa) pB(x), (1)

where pS and pB are the signal and background distri-
butions, respectively. Weak supervision assumes sample

independence, that Eq. 1 holds with the same distribu-
tions pS(x) and pB(x) for all mixtures. Although in most
situations sample independence does not hold perfectly
(see e.g. Ref. [44]), it is often a very good approximation
(cf. Table II below).

LLP uses any fully supervised classification method
and modifies the loss function to globally match the sig-
nal fraction predicted by the model on a batch of training
samples to the known truth fractions fa. Breaking the
training set into batches, normally done to parallelize
training, takes on a new significance with LLP since the
loss function is evaluated globally on each batch. The
batch size, which for LLP we define as the number of
samples drawn from each mixture during one update of
the model, is a critical hyperparameter of LLP.

The loss functions we use for LLP di↵er from those in
Ref. [36]. Analogous to the mean squared error (MSE)
loss function for fully supervised (or CWoLa) training,

Property LLP CWoLa

Compatible with any trainable model 3 3
No training modifications needed 7 3
Training does not need fractions 7 3
Smooth limit to full supervision 7 3
Works for > 2 mixed samples 3 ?

TABLE I. The essential pros (3), cons (7), and open questions
(?) of the CWoLa and LLP weak supervision paradigms.

we introduce the weak MSE (WMSE) loss for the LLP
framework:

`WMSE =
X

a

 
fa � 1

N

NX

i=1

h(xi)
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, (2)

where N is the batch size, a indexes the mixed samples,
and h is the model. Analogous to the crossentropy, we
also introduce the weak cross entropy (WCE) loss:

`WCE =
X

a

CE

 
fa,

1

N

NX

i=1

h(xi)

!
, (3)

where CE(a, b) = �a log b�(1�a) log(1�b). One caveat
we discovered while exploring LLP is that the range of
h(x) must be restricted to [0, 1], otherwise the model falls
into trivial minima of the loss function. We also observe
the e↵ect of model outputs becoming e↵ectively binary at
0 and 1, necessitating additional care to avoid numerical
precision issues.

CWoLa classifies two mixtures, M1 and M2, from each
other using any fully supervised classification method.
The resulting classifier is then used to directly distinguish
the original signal and background processes. Amazingly,
the CWoLa classifier asymptotically (as the amount of
training data increases) approaches an ideal classifier
trained on pure samples [37, 45, 46]. CWoLa does not
require that the fractions fa are known for training (the
fractions on smaller test sets can be used to calibrate the
classifier operating points). The CWoLa framework has
the nice property that as the samples approach complete
purity (f1 ! 0, f2 ! 1) it smoothly approaches the fully
supervised paradigm. CWoLa presently only works with
two mixtures; if more than two are available they can
be pooled at the cost of diluting their purity. The key
features of CWoLa and LLP are compared in Table I.
Note that no learning is possible with either method as
f1 ! f2.

To explore weak supervision methods with high-
dimensional inputs, we simulate Z + q/g events at

p
s =

13 TeV using Pythia 8.226 [47] and create artificially
mixed samples with various quark (signal) fractions.
Jets with transverse momentum pjet

T 2 [250, 275] GeV
and rapidity |y|  2.0 are obtained from final-state,
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As usual, it is likely that the best approach will use all of the 
available information, including some input from simulation.

Another interesting 
direction is to push the 

weak supervision paradigm 
a step further and define 

the classes so that it works.

…this could be as simple as pre-training in MC and 
then running weak supervision or actually explicitly 

combining weak supervision and pivoting.
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FIG. 2. The jet topics method applied to constituent
multiplicity, starting with Z+jet (pink) and dijet (purple)
distributions from Pythia 8.226. There is good agreement
between the two extracted jet topics (orange and green) and
pure Z+quark and Z+gluon distributions (red and blue).

and the “quark-subtracted gluon distribution”, defined
analogously. By universality, the topics calculated from
pure samples via Eq. (6) and from mixtures via Eq. (4)
are identical. These may be useful in their own right,
particularly if the quark/gluon fractions are uncertain
but (q|g) and (g|q) can be determined analytically or
from simulation (see Fig. 4 below).

We now turn to a practical demonstration of the jet
topics method for realistic quark and gluon samples.
Following Ref. [37], we consider two mixed jet processes
at the LHC: the quark-enriched Z+jet process and the
gluon-enriched dijets process. See Ref. [61] for alternative
selections for quark- or gluon-enriched samples. The
parton shower Pythia 8.226 [62, 63] is used to generate
500k jets at

p
s = 13 TeV including hadronization

and multiple parton interactions (i.e. underlying event).
Detector-stable, non-neutrino particles are clustered into
anti-kt jets [64] with radius R = 0.4 using FastJet
3.3.0 [65]. The hardest jet(s) in each event (one jet
for Z+jet and up to two jets for dijets) are selected if
they have transverse momentum pT 2 [250, 275] GeV
and rapidity |y|  2. These cuts resulted in the
Z+jet process having (Pythia-labeled) quark fraction

f (1)

q = 0.88 and the dijet process having f (2)

q = 0.37.
We use the constituent multiplicity within a jet as the
feature representation x, since it is known to be a good
quark/gluon discriminant [18].

In Fig. 2, we present the result of extracting two
jet topics from these samples. Shown are the con-
stituent multiplicity distributions from the original
Z+jet and dijet samples, from Pythia-labeled Z+quark
and Z+gluon samples, and from the jet topics T

1

and T
2

using Eq. (4). Uncertainties are estimated by assuming
±

p
N bin count uncertainties and only considering bins

FIG. 3. Cross sections for jet topics (orange and green) using
topic fractions extracted from the Z+jet sample across 10
rapidity bins. The extracted topic cross sections closely track
the underlying Z+quark and Z+gluon cross sections (red and
blue).

with more than 30 events. We determine the  values
of Eq. (3) by selecting the most constraining (anchor)
bin: that with the lowest upper uncertainty bar on
the ratio. Remarkably, the two extracted jet topics
overlap very well with the underlying quark and gluon
distributions, providing practical evidence that Eq. (4)
works as desired, at least for constituent multiplicity.
We verified that similar results could be obtained from
samples with di↵erent pT cuts and from mixtures of
dijets at di↵erent rapidities. This approach is similar
to the template extraction procedure in Ref. [24], with
the important distinction that the quark/gluon fractions
need not be specified a priori.
In Fig. 3, we use the extracted jet topics to construct

separate jet rapidity spectra for quark and gluon jets
in the Z+jet samples. Binning the Z+jet sample into
10 rapidity bins in |y| < 2, we find the mixture of the
two topics extracted above that most closely matches the
constituent multiplicity histogram in each rapidity bin,
minimizing the squared error to find the best mixture.
This is an example of the general problem of extracting

sample fractions f (a)
k from various mixed samples. As

desired, the extracted topic cross sections in Fig. 3 track
the true quark and gluon rapidity cross sections.
Thus, just from a collection of mixed-sample his-

tograms, one can make progress toward extracting both
the underlying distributions pk(x) and the fraction of

each jet topic f (a)
k . Crucially, Figs. 2 and 3 are just

novel projections of the hadron-level multi-di↵erential
jet cross section d3�/dpT dy dn

const

on two independent
samples, making jet topics implementable on existing
LHC jet measurements (e.g. [33]). The agreement
between the operationally-defined jet topics and the
theoretically-ambiguous quark and gluon distributions
may even suggest using mutual irreducibility of the final-

E. Metodiev and J. Thaler, Phys. Rev. Lett. 120 (2018) 241602
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There is a lot more ML can 
do than classify examples!

jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show

– 11 –

Classification

RegressionGeneration

arbitrarily 
many 

categories

map noise 
to structure

provide 
examples 
for training



�40Simulation dependence + regression

One source of MC dependence is the same as classification:

→ mis-modeling dependencies between features

However, there is a new source: 
dependence on the feature priors.

Figure 8: ROC curves for the Pythia- and Herwig-trained CNNs applied to 200 GeV samples

generated with both of the generators. Remarkably, the network performance seems robust

to which samples are used for training.

and Figure 9 show the resulting ROC curves and distributions of convolutional network

outputs on the colored jet images. We find that the network is surprisingly insensitive to the

generator: the convolutional network trained on Pythia jets and tested on Herwig jets has

comparable performance to the convolutional network trained directly on Herwig jets and

tested on Herwig jets. This insensitivity is a positive sign for being able to train the network

on MC-generated jets and apply it to data robustly.

6 Conclusions

The ability to distinguish quark-initiated jets from gluon-initiated jets would be of tremendous

practical application at colliders like the LHC. For example, many signals of beyond the

standard model physics contain mostly quark jets, while their backgrounds are gluon-jet

dominated. Quark/gluon jet discrimination is also extremely challenging: correlations in

their radiation patterns and non-pertubative e↵ects like hadronization are hard to disentangle.

Thus this task is ideally suited for artificial intelligence.

In this paper, we have applied machine learning techniques developed for computer vi-

sion, namely deep convolutional artifical neural networks, to the quark/gluon di↵erentiation

problem. Overall, we find excellent performance of the deep networks. In particular, these

networks, which use essentially no input about the physics underlying the di↵erences be-

tween these two jet types, performs as well or better than a collection of the best physically

motivated observables from other studies (see Table 1).
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P. Komiske, E. Metodiev, M. Schwartz, JHEP 01 (2017) 110

This is really new for regression - 
for classification, if p(x|signal) and 
p(x|background) are mis-modeled, 
you get the NP-optimal answer as 

long as their ratio is correct.

very different priors, 
but correct classifier



�41Simulation dependence + regression

An example that you can have in mind is jet energy calibration.

det
η
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Simulation ATLAS
 = 13 TeV, Pythia Dijets

 = 0.4, EM scaleR tkanti- We want to predict 
the true energy given 
the measured energy 

  
(and possibly other 
features - more on 

that soon)

…however what I’m about to say applied more generally 
(though the impact is biggest when the resolution is poorest)

Phys. Rev. D 96 (2017) 072002



�42What can go wrong?

Suppose you have some features x and you want to predict y.

One way to do this is to find an f that 
minimizes the mean squared error (MSE):

f = argming
P

i(g(xi)� yi)2

Then, f(x) = E[y|x].
If you did not know this, prove it!  
For fun, you can also show that f 

is the median if instead you used 
the mean absolute error.

Why is this a problem?

detector energy true energy



�43What can go wrong?

f(x) = E[y|x] =
R
dy y p(y|x)

E[f(x)|y] =
R
dxdy0 y0 ptrain(y0|x)ptest(x|y)

this need not be y even if ptrain = ptest (!)  



�44One solution: Numerical inversion

ATLAS and CMS use a trick to be prior-independent:

Numerical inversion instead of predicting y from 
x, predict x from y and then invert the function

For math details, see A. Cukierman and B. Nachman, NIMA 858 (2017) 1

… put another way:  
learn f:y → x and then for a given x, predict f-1(x)

by construction, f is independent of p(y) and thus 
f-1 also does not depend on p(y), as desired.



�45Caveats about numerical inversion

This procedure is independent of the prior p(y) but 
may not close exactly, i.e. E[f-1(x)|y] may not be y.

For math details, see A. Cukierman and B. Nachman, NIMA 858 (2017) 1

…under mild assumptions, it does close for the mean absolute 
error, but usually has some non-closure for the MSE.

Also, the calibration procedure can distort the 
underlying distribution, i.e. if you start with a Gaussian, 

you almost never end up with exactly a Gaussian. 



�46+ more features

E[
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 / 

y
The detector response of jets depends on many properties 

of the jet.  Ideally, the calibration can include this!
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�47Global sequential calibration

The current ATLAS approach to including more 
features is to repeat NI sequentially:

calorimeter, and MS (see Sec. 5.3 in Ref. [1] for the detailed list). This reduced dependence makes the
response more similar for quark and gluon jets, reduces the uncertainty due to jet fragmentation modeling
for a given jet type, and improves the jet energy resolution. The final step of the jet calibration procedure
applied only to data is an in-situ correction that accounts for the residual di�erence in R between data and
simulation. Complete details about the ATLAS jet calibration procedure can be found in Ref. [1, 2].

The focus of this note is on improving the method used for the MC-based residual calibration of the jet
pT on various jet quantities following an inclusive calibration, which in ATLAS is accomplished with the
GSC.

To perform a calibration in pT, one may want to learn a function that predicts p

true
T given p

reco
T . While

straightforward, this method depends on the distribution of p

true
T and thus renders the calibration dependent

on the event sample from which it is derived. Moreover, this method does not guarantee that f (x) ⇡ x

even for the sample used to derive the calibration. After applying the learned function it should be the
case that p

reco
T ⇡ hptrue

T |preco
T i, but f (x) = hpreco

T |ptrue
T = xi ⇡ x may not necessarily be satisfied. A

potential modification of the naive procedure is to enforce that the distribution of p

true
T used in the learning

is uniform over a particular range. However, one can show that if f (x) is nonlinear or if the resolution
�(p

reco
T |ptrue

T ) is nonconstant, then even with this modification there can be large non-closures. Since both
of these properties are true of jet reconstruction in ATLAS, this simple fix does not solve the non-closure
problem.

An approach that can be used to ensure that the calibration is independent of the p

true
T distribution is called

numerical inversion, which is the method used in ATLAS for the jet energy corrections. Instead of learning
to predict p

true
T given p

reco
T , numerical inversion does exactly the opposite - by using f (x) directly, p

reco
T is

calibrated via p

reco
T 7! p̂

reco
T ⌘ f

�1(p

reco
T ). This procedure is inherently independent of the distribution of

p

true
T and under a wide variety of circumstances [5], the response closes (R̂(x) ⌘ hp̂reco

T /ptrue
T |ptrue

T = xi ⇡ 1)
following the calibration.

Even though the overall response closes, f (x) may have a residual dependence on auxiliary information
available from the detector, such as the jet radiation pattern and the energy deposition pattern in the
detector. Let ✓ represent the available auxiliary information about a jet. Then, the function f can be
generalized as f✓ (x) ⌘ hpreco

T |ptrue
T = x, ✓i. For ✓ 2 R, the correction for these residual dependencies is

then given by p

reco
T 7! p̂

reco
T = f

�1
✓ (p

reco
T ). In practice, the distribution of ✓ is binned and the numerical

inversion is performed for di�erent functions in each bin of ✓. When ✓ 2 Rn, the calibration proceeds
with a sequential application of numerical inversion:

p

reco
T 7! p̂

reco
T = f

�1
✓n

⇣
· · · f

�1
✓2

⇣
f

�1
✓1

⇣
p

reco
T

⌘⌘
· · ·
⌘
. (1)

The sequential method removes all residual dependencies when f✓i (x) is independent of ✓ j,i, i.e. when
f✓ (x) is entirely determined by one feature at time. If there are such dependencies of f✓ (x) on more than
one feature ✓i, then there could be residual dependencies on some combination of the ✓i after the full
sequential correction.
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This works 
well when the 
jet response is 
independent 
of qi given qj.  



�48Machine learning calibration

For reasons discussed earlier, we can’t include 
correlations by learning y given x and all the q’s.

However, it would still be great to use machine 
learning to automatically and efficiently make 

use of correlated information.

We cannot use numerical inversion out-of-the-box 
because we now have a many-to-one function.



�49Generalized numerical inversion

Since we are not (necessarily) interested in 
calibrating the q’s, we can generalize NI as follows:

(1) Learn a function f to predict x given y and all the q's.

(2) For every combination of q, invert f. 

(3) Calibrate via x → fq-1(x)

Step (2) is intractable, so replace it with another 
learning step: predict y given f(y,q) and q.



�50GNI in action

Figure 1 shows the dependence of the response (following the inclusive energy calibration) on ntrack and
�Rtrack,avg. The response depends strongly on these two quantities, varying by about 20-30% across the
accessible range. The trends are also not uniform in jet pT - the response of lower pT jets shows a stronger
dependence on both ntrack and �Rtrack,avg.

In order to understand the performance provided by a simultaneous instead of a sequential approach,
approximations are derived for the calibration functions fntrack (x), f�Rtrack,avg (x), and fntrack,�Rtrack,avg (x),
and the sequential calibration f

�1
�Rtrack,avg

( f

�1
ntrack (p

reco
T )) is compared with the simultaneous calibration

f

�1
ntrack,�Rtrack,avg

(p

reco
T ). The sequential calibration presented here di�ers in some details with the stand-

ard GSC used in ATLAS; a major di�erence is that the calibration presented here does an unbinned fit
to p

reco
T and the feature ✓ while the GSC does a binned fit which is then smoothed. To control for this

ability of the neural network to operate unbinned, the generalized numerical inversion approach is used
for both the one- and two-feature cases in order to study only the di�erences between the sequential and
the simultaneous calibrations. However, importantly the sequential approach demonstrated here does no
worse than the GSC in correcting for the residual dependence of the response.

The learned functions in the sequential calibration, L(p

true
T , ntrack)/ptrue

T and L(p

true
T ,�Rtrack,avg)/ptrue

T , are
presented in Fig. 2(a) and (d). As expected, Fig. 2(a) looks similar to Fig. 1(a), as the neural network has
learned to approximate the shape of the response with respect to ntrack (Fig. 2(d) is not expected to look
similar to Fig. 1(b), since the previously applied ntrack correction a�ects the dependence of the response
on �Rtrack,avg). The ratio of p

reco
T to L(p

true
T ) (for the appropriate ✓, at the appropriate step of the sequential

calibration) is shown in (b) and (e), and the ratio is very close to 1, indicating the learning step is working
properly. The closure of the calibrations at each step of the sequence is shown in (c) and (f) of Fig. 2.
In both cases, the calibration closes, with an average calibrated response at unity, independent of the
features.

(a) (b)

Figure 1: The dependence of the response on (a) ntrack and (b) �Rtrack,avg in several bins of truth jet pT.

6

Consider two features:

average track pT-weighted 
distance from jet center
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R is the calibrated E[x|y] / y

(a) (b)

(c) (d)

Figure 4: The dependence of (a) dR̂
dntrack

on �Rtrack,avg and (b) dR̂
d�Rtrack,avg

on ntrack for: a calibration using a network
with ✓ = {ntrack} (circles); a calibration using a network with ✓ = {�Rtrack,avg} employed sequentially after correcting
for ntrack (squares); and a simultaneous calibration using a network with ✓ = {ntrack,�Rtrack,avg} (diamonds). Also,
the closure as a function of p

true
T , highlighting the nonclosure due to this residual dependence in (c) a selection

intended to target gluon jets; and (d) a selection intended to target quark jets.

9

Only the simultaneous approach removes 
the full residual dependence!
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(a) (b)

(c) (d)

Figure 4: The dependence of (a) dR̂
dntrack

on �Rtrack,avg and (b) dR̂
d�Rtrack,avg

on ntrack for: a calibration using a network
with ✓ = {ntrack} (circles); a calibration using a network with ✓ = {�Rtrack,avg} employed sequentially after correcting
for ntrack (squares); and a simultaneous calibration using a network with ✓ = {ntrack,�Rtrack,avg} (diamonds). Also,
the closure as a function of p

true
T , highlighting the nonclosure due to this residual dependence in (c) a selection

intended to target gluon jets; and (d) a selection intended to target quark jets.

9

Slightly better closure for the simultaneous calibration.
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As observables sensitive to the quark or gluon nature of a jet, ntrack- and �Rtrack,avg-based calibrations
ideally reduce the response di�erence between jet types. Figure 5 shows the di�erence between the
response for quark and gluon jets as a function of the truth jet pT for di�erent calibration methods. Since
gluon jets have a softer constituent pT spectrum, their response is lower than for quark jets on average.
Applying any residual correction can be seen to be beneficial in reducing the response di�erence and the
largest reduction is observed for the simultaneous approach. Reducing the response di�erence between
quark and gluon jets is important for analyses that have an unknown or poorly modeled quark/gluon
composition. The properties of quark and gluon jets can depend on the specific model of jet fragmentation
used; therefore, it is also important to check that the improvement in the quark-gluon response di�erence is
robust to these model di�erences. In addition to showing the results for P����� 8, Fig. 5 also demonstrates
that (without retraining) there are also improvements for H����� 7.

One step beyond reducing the quark/gluon composition dependence is to reduce the sensitivity to the
modeling of the radiation pattern inside a given jet type. An important consequence of such a reduction
could be a smaller systematic uncertainty associated with jet fragmentation modeling. Figure 6 quantifies
this e�ect by showing the di�erence in the jet response between P����� 8 and H����� 7 for quarks and
gluons separately. It can be seen that the jet response di�erence between the generators is generally better
in the simultaneous calibration method than in the sequential method. In particular, in some bins of p

true
T ,

the sequential method makes the di�erence between the generators worse than not including the second
variable, while the simultaneous method retains or slightly improves the di�erence between the generators.
This could happen if the correlation between the two features changes between the generators in such a
way that the sequential calibration e�ectively undoes the correction of the first feature in the sample the
network was not trained on. Another possible e�ect is that the correlation between the two features stays
the same between the generators, but the underlying distribution of one or both of the features in the jets
changes. In either case, since the simultaneous method conditions on both features at once, this does not
a�ect the final performance.

(a) P����� 8 (b) H����� 7

Figure 5: The di�erence between the response of quarks and gluons as a function of p

true
T for: before any ntrack or

�Rtrack,avg correction (open circles); a calibration using a network with ✓ = {ntrack} (circles); a calibration using a
network with ✓ = {�Rtrack,avg} sequentially after correcting for ntrack (squares); and a simultaneous calibration using
a network with ✓ = {ntrack,�Rtrack,avg} (diamonds).

A final metric for studying the impact of generalized numerical inversion is the jet energy resolution. One
component of the jet energy resolution is due to the spread in the jet energy response for various values
of ✓. In the extreme case that there is no spread in p

reco
T given p

true
T and ✓, there will still be an e�ective

10

Slightly less dependence on the origin using 
the simultaneous approach.
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Adding more features (with more interdependencies) 
will lead to more dramatic improvements.

There is an interesting connection to unfolding 
(see e.g. A. Glazov, 1712.01814).

We can also extend this approach to calibrate other 
observables and even simultaneously calibrate some of 

the q’s (even more generalized NI!)



�55Anomaly Detection

I will leave you with one last, but very exciting topic.

One of the most important goals of HEP is to search for new 
particles.  However, we have not found anything 

(significantly) unexpected in a while … we need simulation-
independent ways of searching for new particles !

N.B. The approach discussed here is not the only one - see also M. Farina, Y. 
Nakai, D. Shih, 1808.08992 & T. Heimel, G. Kasieczka, T. Phlen, J. Thompson, 

1808.08979 for an alternative approach based on auto-encoders.

anomalies, i.e. something unexpected



�56Remember CWoLa …
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M
1

and M
2

defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f
1

> f
2

, an optimal classifier trained to

distinguish M
1

from M
2

is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f
1

pS + (1� f
1

) pB
f
2

pS + (1� f
2

) pB
=

f
1

LS/B + (1� f
1

)

f
2

LS/B + (1� f
2

)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f
1

> f
2

, since

@LS/B
LM1/M2

= (f
1

� f
2

)/(f
2

LS/B � f
2

+ 1)2 > 0. If f
1

< f
2

, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f
1

and f
2

are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

Solution: Train 
directly on data using 

mixed samples

CWoLa
Classification 

Without Labels

E. Metodiev, BPN, J. Thaler, JHEP 10 (2017) 51



�57Weak/unsupervised learning for anomalies

Can we take this 
idea one step further 
to look for something 

unexpected?

*Image from this article.  This Koala is actually being freed - I do not condone violence against these animals!

= CWoLa Hunting*

CWoLa Hunting
14

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

J. Collins, K. Howe, BPN, 1805.02664

Minimal assumption: if there is a signal, it 
is localized in one known dimension.

is there something new lurking below?

http://www.couriermail.com.au/news/rescued-koala-found-without-head-and-testicles-in-trophy-hunter-attack-on-sunshine-coast/news-story/fcf69786a8d9e2d4add2abbb6c0c762d
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Mixed sample 1: 
signal region

CWoLa Hunting
14

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

J. Collins, K. Howe, BPN, 1805.02664

Mixed sample 2: 
sideband region

Train a classifier to 
distinguish the two 

mixed samples.

If there is a signal, there will be something to learn and 
the signal will be enhanced.  If no signal, nothing to learn.
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Need to be careful about testing/training on the same data.

Data Partitioning Classifier Training Event Selection & Merging

k-
fo

ld
s

1

2
3
4
5

m
JJ

Ensemble Model 1

1

2

3
4
5

Ensemble Model 2

.
.
.

.
.
.

Figure 7. Illustration of the nested cross-validation procedure. Left: the dataset is randomly
partitioned bin-by-bin into five groups. Center: for each group, an ensemble classifier is trained
on the remaining groups. For each of the four possible combinations of these four groups into three
training groups and one validation group, a set of invidual classifiers are trained and the one with
best validation performance is selected. The ensemble classifier is formed by the average of the four
selected individual classifiers. Right: Data are selected from each test group using a threshold cut
from their corresponding ensemble classifier. The selected events are then merged into a single m

JJ

histogram.

ensemble model is used to classify events in the test set, by selecting the Y % most signal-like

events. This procedure is repeated for all five choices of test set, and the selected events from

each are combined into a signal histogram in m
JJ

. The presence of an identifiable signal will

be indicated by a bump in the signal region, for which standard bump-hunting techniques

can be used to perform a hypothesis test. The use of averaged ensemble models is important

to reduce any performance degradation due to overfitting. Since each of the four models used

to make each ensemble model has been trained on di↵erent training sets and with di↵erent

random weight initialization, they will tend to overfit to di↵erent events. The models will

therefore disagree in regions where overfitting has occurred, but will tend to agree in any

region where a consistent excess is found.

In our study, the classifiers used are dense neural networks built and trained using Keras

with a TensorFlow backend. We use four hidden layers consisting of a first layer of 64 nodes

with a leaky Rectified Linear Unit (ReLU) activation (using an inactive gradient of 0.1), and

second through fourth layers of 32, 16, 4 nodes respectively with Exponential Linear Unit

(ELU) activation [94]. The output node has a sigmoid activation. The first three hidden

layers are regulated with dropout layers with 20% dropout rate [95]. The neural networks are

trained to minimize binary cross-entropy loss using the Adam optimizer with learning rate of

– 13 –
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Figure 8. Left: m
JJ

distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
m

JJ

' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with m
J A

' 400 GeV and

– 15 –

J. Collins, K. Howe, BPN, 1805.02664

Using a classifier trained to distinguish a signal region from a  
sideband, make progressively harsher cuts on the NN output 

Simulation 
study

Simulation 
study

Uninteresting

Nobel Prize
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Figure 11. Truth-label ROC curves for taggers trained using CWoLa with varying number of signal
events, compared to those for a dedicated tagger trained on pure signal and background samples
(dashed black) and one trained to discriminate W and Z jets from QCD (dot-dashed black). The
CWoLa examples have B = 81341 in the signal region and S = (230, 352, 472, 697, 927).

the cuts. This illustrates that CWoLa hunting may find unexpected signals which are not

targeted by existing dedicated searches.

One final remark is about how one would use CWoLa hunting to set limits. In the form

described above, the CWoLa hunting approach is designed to find new signals in data without

any model assumptions. However, it is also possible to recast the lack of an excess as setting

limits on particular BSM models. Given a simulated sample for a particular model, it would

be possible to set limits on this model by mixing the simulation with the data and training

a series of classifiers as above and running toy experiments, re-estimating the background

each time. This is similar to the usual bump hunt, except that there is more computational

overhead because the background distribution is determined in part by the neural networks,

and the distribution in expected signal e�ciencies cannot be determined except by these toy

experiments.

5 Conclusions

We have presented a new anomaly detection technique for finding BSM physics signals directly

from data. The central assumption is that the signal is localized as a bump in one variable in

which the background is smooth, and that other features are available for additional discrim-

ination power. This allows us to identify potential signal-enhanced and signal-depleted event

samples with almost identical background characteristics on which a classifier can be trained

using the Classification Without Labels approach. In the case that a distinctive signal is

present, the trained classifier output becomes an e↵ective discriminant between signal events

– 18 –
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If you know what you are looking for, you should look for it.  If 
you don’t know, then CWoLa hunting may be able to catch it!
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(1) Need an observable X (e.g. mJJ) where the 
signal is localized and the background is not.

(2) Identify features Y (e.g. jet substructure) that 
are ~independent of X, but can be useful for 
identifying a broad range of new particles.

actually, we don’t need independence, we just 
need them to not allow us to sculpt bumps.



�63Summary

1

1

1
1

1

1

1

• Simulation dependence in traditional ML4HEP 

• Classification 

✦ Adversarial approaches 

✦ Weak supervision 

• Regression 

• Anomaly Detection



Deep learning is a powerful tool for enhancing 
data analysis.  However, it is crucial to know when 

and where we depend on prior knowledge. 

�64Conclusions and Outlook

1

1

1
1

1

1

1
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1
1
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1

Mitigating/reducing dependence on priors can improve 
performance and may even help us to understand 

something new and fundamental about nature!
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