Time-dependent amplitude analysis of $B_s \rightarrow D_s K \pi \pi$ at LHCb Physics at the Terascale Workshop, DESY Hamburg

P. d'Argent¹

¹Physikalisches Institut Heidelberg

26.11.2018

CKM Matrix

- Quark transitions are described by CKM matrix
- Complex elements are only source of CPV in SM
- Key test of the SM: Verify unitarity

CKM γ from $B_s \rightarrow D_s K \pi \pi$

- Close sensitivity gap: Direct measurement: $\gamma = (73.5^{+4.3}_{-5.7})^{\circ}$ Indirect measurement: $\gamma = (65.3^{+1.0}_{-2.5})^{\circ}$ (CKM fit)
- Exploit interference between $b \rightarrow c$ and $b \rightarrow u$ transitions achieved through $B_s \bar{B}_s$ mixing
- Both processes are similar suppressed \Rightarrow Expect large interference !

Full time-dependent amplitude PDF:

$$\begin{aligned} \frac{\mathrm{d}\Gamma(x,t)}{e^{-\Gamma_{s}t}\,\mathrm{d}t\,\mathrm{d}\Phi_{4}} &\propto \left(|\mathcal{A}_{f}^{c}(x)|^{2} + r^{2}\,|\mathcal{A}_{f}^{u}(x)|^{2}\right)\,\cosh\left(\frac{\Delta\Gamma_{s}\,t}{2}\right) \\ &+ q\,f\,\left(|\mathcal{A}_{f}^{c}(x)|^{2} - r^{2}\,|\mathcal{A}_{f}^{u}(x)|^{2}\right)\,\cos\left(\Delta m_{s}\,t\right) \\ &- 2\mathrm{Re}\left(\mathcal{A}_{f}^{c}(x)^{*}\,r\,\mathcal{A}_{f}^{u}(x)\,e^{i\delta - if(\gamma - 2\beta_{s})}\right)\,\sinh\left(\frac{\Delta\Gamma_{s}\,t}{2}\right) \\ &- 2\,q\,f\,\mathrm{Im}\left(\mathcal{A}_{f}^{c}(x)^{*}\,r\,\mathcal{A}_{f}^{u}(x)\,e^{i\delta - if(\gamma - 2\beta_{s})}\right)\,\sin\left(\Delta m_{s}\,t\right) \end{aligned}$$

$$q=+1,0,-1$$
 for a $B^0_s,$ no-, (\bar{B}^0_s) tag $f=+1(\text{-}1)$ for $D^-_sK^+\pi\pi$ $(D^+_sK^-\pi\pi)$ final states.

Data set

- Using Run-1 and 15/16/17 LHCb data ($\approx 7 \text{ fb}^{-1}$)
- Reconstruct three D_s final-states: $KK\pi$, $\pi\pi\pi$ and $K\pi\pi$
- Have selected 5k signal events (100k calibration events)

Experimental challenges

• $\Delta m_s = (xx.xxx \pm 0.009(stat.))ps^{-1}$ More presice than PDG average: $\Delta m_s = (17.757 \pm 0.021)ps^{-1}$

Plenty of possible decay channels ! How to select them ?

Decay channel $B_{\rm s} \to D_{\rm s}^{-} [K_1(1270)^+ [S, D] \to \pi^+ K^* (892)^0]$ $B_s \rightarrow D_s^- [K_1(1270)^+ \rightarrow \pi^+ K^*(1430)^0]$ $B_{\rm s} \to D_{\rm s}^{-} [K_1(1270)^+ [S, D] \to K^+ \rho(770)^0]$ $B_s \to D_s^- [K_1(1270)^+ [S, D] \to K^+ \omega(782)]$ $B_s \rightarrow D_c^{-} [K_1(1400)^+[S, D] \rightarrow \pi^+ K^*(892)^0]$ $B_s \to D_s^- [K_1(1400)^+ [S, D] \to K^+ \rho(770)^0]$ $B_5 \rightarrow D_5^- [K(1460)^+ \rightarrow \pi^+ \kappa]$ $B_s \rightarrow D_s^- [K(1460)^+ \rightarrow K^+ \sigma]$ $B_s \to D_s^- [K(1460)^+ \to \pi^+ K^*(892)^0]$ $B_{\rm s} \to D_{\rm s}^{-} [K(1460)^+ \to K^+ \rho(770)^0]$ $B_s \to D_s^- [K^*(1410)^+ \to \pi^+ K^*(892)^0]$ $B_{\rm s} \to D_{\rm c}^{-} [K^*(1410)^+ \to K^+ \rho(770)^0]$ $B_s \rightarrow D_s^{-} [K_2^*(1430)^+ \rightarrow \pi^+ K^*(892)^0]$ $B_s \rightarrow D_s^- [K_2^*(1430)^+ \rightarrow K^+ \rho(770)^0]$ $B_s \to D_s^- [K^*(1680)^+ \to \pi^+ K^*(892)^0]$ $B_s \to D_c^- [K^*(1680)^+ \to K^+ \rho(770)^0]$ $B_{\rm s} \rightarrow D_{\rm s}^{-} [K_2(1770)^+ \rightarrow \pi^+ K^*(892)^0]$ $B_s \to D_s^- [K_2(1770)^+ \to K^+ \rho(770)^0]$ $B_s \rightarrow \sigma^{\bar{0}} (D_s^- K^+)_S$ $B_s[S, P, D] \rightarrow \rho(770)^0 (D_s^- K^+)_V$ $B_s \to K^* (892)^0 (D_s^- \pi^+)_S$ $B_{s}[S, P, D] \rightarrow K^{*}(892)^{0} (D_{c}^{-}\pi^{+})_{V}$ $B_s \rightarrow (D_s^- K^+)_S (\pi^+ \pi^-)_S$

- Overwhelmingly high number of possible amplitudes
- Adding more fit parameters will describe this data better
 ⇒ Overfitting
- LASSO: Data-driven method for model selection [M. Williams, arXiv:1505.05133]
- Include "all" amplitudes, but penalize complexity in the likelihood:

LASSO: Toy experiment

• Generated: pdf = 1 + x

• Fitted pdf =
$$1 + \sum_{i=1}^{10} c_i x^i$$

•
$$-2 \cdot \log(L) \rightarrow -2 \cdot \log(L) + \lambda \cdot \sum_i |c_i|$$

Full time-dependent amplitude fit with LASSO model

Selected 7 $b \rightarrow c$ and 7 $b \rightarrow u$ amplitudes

Selected LASSO amplitudes

Decay Channel	F ^c [%]	F ^u [%]
$B_s \rightarrow D_s \left(K_1(1270) \rightarrow K^*(892) \pi \right)$	6.3 ± 1.6	14.9 ± 4.5
$B_s ightarrow D_s \left(K_1(1270) ightarrow K ho(770) ight)$	12.3 ± 1.4	29.1 ± 6.1
$B_s \rightarrow D_s (K_1(1270) \rightarrow K_0^*(1430) \pi)$	3.4 ± 0.5	8.0 ± 2.1
$B_s \rightarrow D_s \left(K_1(1400) \rightarrow K^*(892) \pi \right)$	48.3 ± 4.5	17.2 ± 8.6
$B_s \rightarrow D_s \left(K^*(1410) \rightarrow K^*(892) \pi \right)$	15.5 ± 1.0	
$B_s \rightarrow D_s (K^*(1410) \rightarrow K \rho(770))$	6.7 ± 0.6	
$B_s \rightarrow D_s \left(K(1460) \rightarrow K^*(892) \pi \right)$		21.0 ± 4.6
$B_s \rightarrow (D_s \pi)_P \ K^*(892)$	6.8 ± 1.5	36.0 ± 8.0
$B_s \rightarrow (D_s K)_P \rho(770)$		9.7 ± 4.0
Sum	99.3 ± 4.7	135.9 ± 12.9

Fit parameter	Value	
r	xx.xx \pm 0.04	
δ [°]	xx.xx \pm 16	
$\gamma-2eta_{s}[^{\circ}]$	xx.xx \pm 16	

Preliminary results !

- First measurement of γ using ${\cal B}_{\rm s} \to {\cal D}_{\rm s} {\rm K} \pi \pi$ decays on its way
- Statistical precision: $\sigma(\gamma) = 16^{\circ} (7 \text{fb}^{-1})$

• World average:
$$\sigma(\gamma) = 5.6^\circ$$

•
$$B^\pm o D {K^\pm}, D o K_{s} hh: \sigma(\gamma) = 10^\circ ext{ (LHCb, 5fb}^{-1})$$

•
$$B_s o D_s {\mathcal K}$$
: $\sigma(\gamma) = 20^\circ \; ({
m LHCb}, \; {
m 3fb}^{-1})$

Backup: Amplitude description

Backup: LASSO optimization

How to choose λ ?

- BIC(λ) = -2·log(L) + r·log(N_{events})
 r = Number of parameters with: |c_i| > threshold
- Balances gain in fit quality vs. complexity
- Optimal value $\lambda \approx 4$

Backup: Phasespace-integrated PDF

$$\int P(x, t, q, f) dx \propto \left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) + qf\left(\frac{1-r^2}{1+r^2}\right) \cos\left(m_s t\right) \\ - 2\left(\frac{\kappa r \cos(\delta - f(\gamma - 2\beta_s))}{1+r^2}\right) \sinh\left(\frac{\Delta\Gamma t}{2}\right) \\ - 2qf\left(\frac{\kappa r \sin(\delta - f(\gamma - 2\beta_s))}{1+r^2}\right) \sin\left(m_s t\right) \right] e^{-\Gamma t} \\ = \left[\cosh\left(\frac{\Delta\Gamma t}{2}\right) + qf \mathbf{C} \cos\left(m_s t\right) \\ - \mathbf{D}_f \sinh\left(\frac{\Delta\Gamma t}{2}\right) - q \mathbf{S}_f \sin\left(m_s t\right) \right] e^{-\Gamma t}$$

$$r \equiv \frac{\sqrt{\int |\bar{A}(x)|^2 \mathrm{d}x}}{\sqrt{\int |A(x)|^2 \mathrm{d}x}}, \ \kappa \ e^{i\delta} \equiv \frac{\int A(x)^* \bar{A}(x) \mathrm{d}x}{\sqrt{\int |A(x)|^2 \mathrm{d}x} \sqrt{\int |\bar{A}(x)|^2 \mathrm{d}x}}$$