

Gefördert durch DFG Deutsche Forschungsgemeinschaft

Latest results from ttH and tH in H \rightarrow bb at CMS

12th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale" Michael Waßmer on behalf of the CMS collaboration | November 27, 2018

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (ETP)

ttH and tH

- SM: Yukawa-type coupling of Higgs boson to fermions $(y_f \propto m_f/v)$
 - ightarrow proportional to fermion mass
 - $\rightarrow~{\rm expect}$ largest coupling to top quark
- tTH and tH: direct access to the coupling (no indirect loop contributions)
- $\sigma(t\bar{t}H) \approx 0.5 \, {
 m pb}$ and $\sigma(tH) \approx 90 \, {
 m fb}$ at $\sqrt{s} = 13 \, {
 m TeV}$
- tīH: sensitive to magnitude of y_t
- tH: also sensitive to relative sign between top-Higgs coupling and coupling of Higgs to W boson
- This talk: H→ bb decay channel (coupling y_b) and total 2016 dataset collected by CMS corresponding to 35.9 fb⁻¹

	tīH			tH	
	leptonic	fully-hadronic		leptonic	
$H{\rightarrow} b\overline{b}$	arXiv:1804.03682, submitted to JHEP	JHEP 06 (2018) 10)1 CN	IS-PAS-HIG-1	7-016
H, H→ bb	tH, H→ 00000	bb E	Backup		References
/lichael Waßmer – Latest results from ttH and tH in H $ ightarrow$ bb at CMS Nov				November 27, 2018	2/20

tīH, $H \rightarrow b\overline{b}$ (leptonic)

arXiv:1804.03682, submitted to JHEP

$t\bar{t}H, H \rightarrow b\overline{b}$	tH, H \rightarrow b \overline{b}	Backup	References
000000000	000000	00	00000000
Michael Waßmer - Latest results from ttH a	November 27, 2	2018 3/20	

Signal and background modeling

Signal and background prediction from MC simulation

- Signal (tīH): Powheg+Pythia8 @ NLO QCD (cross sections @ NLO QCD and EW)
- Backgrounds: tt, single top, V+jets, tt +V, Diboson

Dominant background: tī

- $\sigma(t\bar{t})$ \approx 832 pb @ NNLO + NNLL @ 13 TeV
- Problematic: additional heavy flavor jets not from top
- Irreducible $t\bar{t} + b\bar{b}$ contribution with large uncertainties $\mathcal{O}(\sigma(t\bar{t} + b\bar{b})/\sigma(t\bar{t}H)) \approx 10$
- Inclusive tī simulation by Powheg @ NLO QCD
- Additional b-jets (not from top) modeled by parton shower
- Split according to flavor of additional jets and add 50% normalization uncertainties

References

November 27, 2018

Backup

Analysis overview

Classification semileptonic channel

- Split events according to number of jets $(4, 5, \ge 6)$
- Multi-class DNN classifies events into classes corresponding to
 - Main tī +X backgrounds
 - ttH signal
- DNN uses kinematic, event-shape and b-tagging variables as well as matrix element method
- tīH node: signal enriched category
- Background nodes (control regions): constrain large systematic uncertainties on tt +hf processes

Michael Waßmer – Latest results from ttH and tH in H \rightarrow bb at CMS

References

November 27, 2018

Systematic uncertainties

- Several experimental and theoretical uncertainties considered
- Considered as nuisance parameters in profile likelihood fit
- Most important uncertainties in table below

Uncertainty source	$\pm\Delta\mu$ (observed)	$\pm\Delta\mu$ (expected)
Total experimental	+0.15/-0.16	+0.19/-0.17
b tagging	+0.11/-0.14	+0.12/-0.11
jet energy scale and resolution	+0.06/-0.07	+0.13/-0.11
Total theory	+0.28/-0.29	+0.32/-0.29
tt +hf cross-section and parton shower	+0.24/-0.28	+0.28/-0.28
Size of MC samples	+0.14/-0.15	+0.16/-0.16
Total systematic	+0.38/-0.38	+0.45/-0.42
Statistical	+0.24/-0.24	+0.27/-0.27
Total	+0.45/-0.45	+0.53/-0.49

$t\bar{t}H, H \rightarrow b\bar{b}$	tH, H \rightarrow bb	Backup	References
0000000000	0000000	00	00000000
Michael Waßmer - Latest results from	ttH and tH in $H \rightarrow b\overline{b}$ at CMS	Noven	nber 27, 2018 8/20

tīH, $H \rightarrow b\overline{b}$ (hadronic)

JHEP 06 (2018) 101

 $\label{eq:theta} \begin{array}{ll} t\bar{t}H, H \to b\bar{b} & tH, H \to b\bar{b} \\ \circ \\ \hline \\ \text{Michael Waßmer} - Latest results from t\bar{t}H and tH in H \to b\bar{b} at CMS \end{array}$

Backup

References

November 27, 2018

tīH, H \rightarrow bb hadronic

- Selection: \geq 7 jets, \geq 3 b-tagged jets, $H_T \geq$ 500 GeV, lepton veto
- Categorization: jet and b-tag multiplicity
- 2 main backgrounds: QCD multijet and tt
- QCD multijet:
 - Discriminate against QCD multijet with Quark-Gluon-Likelihood-Ratio
 - Estimate shape from controlregion with low number of b-tags
 - Rate is obtained during final fit to data
- tī:
- Estimated from MC simulation (same as in leptonic analysis)
- Difficult contribution: tt + bb
- Final discrimination with matrix element method separating $t\bar{t}H,H \rightarrow b\bar{b}$ with $t\bar{t}$ + $b\bar{b}$

Results

- Best fit: $\mu = 0.9^{+1.5}_{-1.5}$
- Upper observed (expected) 95%
 C.L. limit: μ < 3.8(3.1)
- Dominant uncertainties: QCD estimation, b-tagging, tt +hf contribution

Backup oo References

November 27, 2018

Input to ttH observation, Phys. Rev. Lett. 120, 231801 (2018)

- Combination of several ttH analyses in different decay channels
- Result: μ_{tīH} = 1.26^{+0.31}_{-0.26} with 5.2σ significance above background-only hypothesis
- Higgs coupling to top quarks established
- tt
 tt
 H (H→ bb
) most sensitive
 input channel

November 27, 2018

Input to $H \rightarrow b\overline{b}$ observation, Phys. Rev. Lett. 121, 121801 (2018)

- Combination of several Higgs analyses in $H \rightarrow b\overline{b}$ channel
- Result: $\mu = 1.04^{+0.20}_{-0.19}$ with 5.6 σ signal significance
- Higgs coupling to bottom quarks established
- tt
 tH
 (H→ bb
) significant
 contribution

Backup

tH, H \rightarrow b \overline{b}

CMS-PAS-HIG-17-016

Signal and background modeling

- Signal and background from MC simulation
- Signal (tHq, tHW):
 - MadGraph @ LO (normalized to NLO cross section)
 - Generated for inverted top coupling (ITC) case: $\kappa_{\rm t} = -1, \, \kappa_{\rm V} = 1$
 - Reweighted to other κ_t/κ_V scenarios \rightarrow account not only for different cross sections and branching fractions but also kinematics
 - $\kappa_{\rm t}$ from -3 to 3, $\kappa_{\rm V}$ from 0.5 to 1.5
 - s-channel production neglected due to vanishingly small cross section
 - SM: $\sigma(tHq) \approx 71$ fb, $\sigma(tHW) \approx 16$ fb
 - ITC: $\sigma(tHq) \approx 739 \text{ fb}, \sigma(tHW) \approx 147 \text{ fb}$
- Main backgrounds: tt, single top, ttH, tt +V
 - ttH, tt and single top with Powheg @ NLO
 - tī is also splitted into tī +lf/cc/b/2b/bb

Analysis overview

Event classification

Signal classification:

- BDT used in signal regions
- Discriminate tHq, tHW (signal) from tt (background)
- Uses jet assignment, kinematic, and event-shape variables

Flavor classification:

- BDT used in dilepton control region
- Discriminate tt +lf events from tt +b/2b/bb events
- Constrain normalization uncertainties regarding tt processes (main background)

Results

- Observed (expected) upper limits on cross section times branching fraction
- dominant uncertainties are: tt + hf normalizations, b-tagging, JES
- H→ bb channel starting to get sensitive

tH combination, CMS-HIG-18-009, submitted to Phys. Rev. D

- Profile likelihood scan as function of κ_t
- κ_t affects cross section, branching fractions, and kinematics
- $\begin{array}{l} \bullet \ -2\Delta \ln(\mathcal{L}) = \\ -2\ln(\mathcal{L}(\kappa_{\mathrm{t}})/\mathcal{L}(\hat{\kappa_{\mathrm{t}}})) \end{array}$
- Data favors positive κ_t value over negative with around 1.5σ
- κ_t outside of [-0.9, -0.5] and [1.0, 2.1] excluded @ 95% C.L. for κ_V = 1

November 27, 2018

- Overview about latest tH and ttH results with H \rightarrow bb and 35.9 fb⁻¹ of 2016 data collected by CMS
- All analyses rely heavily on b-tagging and description of tt + hf processes (dominant uncertainties)
- $t\bar{t}H, H \rightarrow b\bar{b}$: most sensitive input to $t\bar{t}H$ observation
- tH, $H \rightarrow b\overline{b}$: starting to get sensitive, more data will help

Backup

 $\begin{array}{ll} t\bar{t}H,H\to b\bar{b} & t\bar{t},H\to b\bar{b} \\ \circ\circ\circ\circ\circ\circ\circ\circ\circ \\ \hline \\ \text{Michael Waßmer - Latest results from t\bar{t}H and tH in H\to b\bar{b} at CMS \\ \end{array}$

Backup ●O References

November 27, 2018

tt + additional b-jets

Conclusion: account for uncertainties of around 30% (left plot) and consider differences between inclusive $t\bar{t}$ and $t\bar{t}$ +bb simulation (right plot) \Rightarrow 50% uncertainties on $t\bar{t}$ +hf processes

$t\bar{t}H, H \rightarrow b\bar{b}$	tH, H \rightarrow bb	Backup	References
0000000000	0000000	00	000000000
Michael Waßmer - Latest results from	ttH and tH in H $ ightarrow$ bb at CMS	November 27, 2018	22/20

References

 D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. Tech. rep. FERMILAB-FN-1025-T. 869 pages, 295 figures, 248 tables and 1645 citations. Working Group web page: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG. Oct. 2016. URL: https://cds.cern.ch/record/2227475.

 [2] Tomáš Ježo et al. "New NLOPS predictions for tt + b -jet production at the LHC". In: Eur. Phys. J. C78.6 (2018), p. 502. DOI: 10.1140/epjc/s10052-018-5956-0. arXiv: 1802.00426 [hep-ph].

tt + heavy flavor splitting

tī sample split further according to gen-jets containing additional b/c hadrons with CMSSW GenHFHadronMatcher tool

- gen-jets: clustered from final state generator particles, p_T > 20, $|\eta|$ < 2.4
- containing hadrons: jets into which b/c hadrons (before decay) that are injected as "ghosts" (energy scaled \rightarrow 0) are clustered
- additional hadrons: cannot be traced back to top-decay products

tt + heavy flavor splitting

Physics motivation

- tt
 tt

 tt
 t + bb

 and tt

 t + bin principle same

 process, well separated jets ⇒ can be

 treated perturbatively
 - $t\bar{t} + b\bar{b}$ signal-like in terms of jets and tags
- tt
 tt
 + 2b different: collinear gluon splitting within one jet ⇒ depends on parton shower tuning
- tt + cc Similar issues, but less signal-like
- Scheme developed in coordination with ATLAS
- Assigning 50% rate uncertainty for tt
 subprocesses

Systematic uncertainties

CMS-PAS-HIG-17-026

Source	Туре	Notes
Luminosity	InN	Signal and all backgrounds
Lepton ID/Iso	shape	Signal and all backgrounds
Trigger efficiency	shape	Signal and all backgrounds
Pileup	shape	Signal and all backgrounds
JES and JER	shape	Signal and all backgrounds
b-Tag HF fraction	shape	Signal and all backgrounds
b-Tag HF stats (linear)	shape	Signal and all backgrounds
b-Tag HF stats (quadratic)	shape	Signal and all backgrounds
b-Tag LF fraction	shape	Signal and all backgrounds
b-Tag LF stats (linear)	shape	Signal and all backgrounds
b-Tag LF stats (quadratic)	shape	Signal and all backgrounds
<i>b</i> -Tag Charm (linear)	shape	Signal and all backgrounds
b-Tag Charm (quadratic)	shape	Signal and all backgrounds
QCD Scale (<i>t</i> tH)	InN	Scale uncertainty for NLO <i>t</i> t <i>H</i> prediction
QCD Scale $(t\bar{t})$	InN	Scale uncertainty for NLO <i>tt</i> prediction
QCD Scale ($t\bar{t}$ +HF)	InN	Additional scale uncertainty for NLO tt+HF predictions
QCD Scale (t)	InN	Scale uncertainty for NLO single top prediction
QCD Scale (V)	InN	Scale uncertainty for NNLO W and Z prediction
QCD Scale (VV)	InN	Scale uncertainty for NLO diboson prediction

 $\begin{array}{c} tH,\,H{\rightarrow}\,b\overline{b}\\ 0000000\end{array}$

Backup

References 00000000 27, 2018 26/20

Michael Waßmer – Latest results from $t\bar{t}H$ and tH in $H{\rightarrow}$ $b\bar{b}$ at CMS

Systematic uncertainties

CMS-PAS-HIG-17-026

Source	Туре	Notes
pdf (<i>gg</i>)	InN	Pdf uncertainty for gg initiated processes except $t\bar{t}H$ ($t\bar{t}$,
		$t\bar{t}Z$)
pdf (<i>ggttH</i>)	InN	Pdf uncertainty for <i>t</i> tH
pdf ($q\bar{q}$)	InN	Pdf uncertainty for $q\bar{q}$ initiated processes ($t\bar{t}W, W, Z$).
pdf (<i>qg</i>)	InN	Pdf uncertainty for qg initiated processes (single top)
Q2 Scale $(t\bar{t})$	shape	Renormalization and factorization scale uncertainties of
		the $t\bar{t}$ ME generator, independent for additional jet fla-
		vors
PS Scale: ISR $(t\overline{t})$	InN	Parton-shower scale uncertainties (for $t\bar{t}$ events), inde-
		pendent for additional jet flavors
PS Scale: FSR $(t\bar{t})$	InN	Parton-shower scale uncertainties (for $t\bar{t}$ events), inde-
		pendent for additional jet flavors
ME-PS matching $(t\bar{t})$	InN	NLO parton-shower matching, hdamp (for $t\bar{t}$ events), in-
_		dependent for additional jet flavors
Underlying Event ($t\bar{t}$)	InN	Underlying event (for $t\bar{t}$ events)
NNPDF3.0 $(t\overline{t})$	shape	Pdf uncertainty for $t\bar{t}$
Bin-by-bin statistics	shape	statistical uncertainty of the signal and background pre-
		diction due o the limited sample size

Backup

References

November 27, 2018

Matrix Element for ttH(bb) vs ttbb

- Signal extraction via Matrix Element Methods (MEM):
 - Event-by-event discriminator build upon matrix elements, combined with reconstruction-level information.

$$\begin{split} & \text{Numerical} & \text{Momentum} & \text{Resolution} \\ & \text{Integration} & \text{function} & \\ & w(\vec{y}|\mathcal{H}) = \sum_{i=1}^{N_{C}} \int \frac{dx_{a}dx_{b}}{2x_{a}x_{b}s} \int \prod_{k=1}^{8} \left(\frac{d^{3}\vec{p}_{k}}{(2\pi)^{3}2E_{k}}\right) (2\pi)^{4} \delta^{(E,z)} \left(p_{a} + p_{b} - \sum_{k=1}^{8} p_{k}\right) \mathcal{R}^{(x,y)} \left(\vec{p}_{\tau}, \sum_{k=1}^{8} p_{k}\right) \\ & \times g(x_{a}, \mu_{F})g(x_{b}, \mu_{F})|\mathcal{M}(p_{a}, p_{b}, p_{1}, ..., p_{8})|^{2} W(\vec{y}, \vec{p}) \\ & \text{Parton} & \text{LO scattering} & \text{Detector} \\ & \text{density} & \text{amplitude} & \text{transfer} \\ & \text{functions} & (\text{Open Loops}) & \text{function} \\ \end{split}$$

 Construct per-event signal/background probability using full kinematic information in an analytic approach

$$P_{s/b} = \frac{w(\vec{y}|t\bar{t}H)}{w(\vec{y}|t\bar{t}H) + k_{s/b}w(\vec{y}|t\bar{t}+b\bar{b})}$$

tt +bb taken as background hypothesis, permuting over all jet assignments

References

November 27, 2018 28/20

Upper limits, tīH, H \rightarrow bb leptonic

arXiv:1804.03682, submitted to JHEP

Jet assignment

- 3 final state hypotheses used: tHq, tHW, tt
- Search for best possible assignment between reconstructed jets and final-state quark
- BDTs used to discriminate between correct and incorrect assignments
- "Correct" assignment for one jet: $\Delta R \leq 0.3$
- Overall assignment with lowest sum of all △R considered to be "correct"
- Jet assignment with highest BDT response (3 hypotheses) chosen
- JA-BDTs use kinematics, b-tagging information and angular variables

$$\sigma_{\rm tHq} = (2.633\kappa_{\rm t}^2 + 3.578\kappa_{\rm V}^2 - 5.211\kappa_{\rm t}\kappa_{\rm V}) \times \sigma_{\rm tHq}^{\rm SM}$$
(1)
$$\sigma_{\rm tHW} = (2.909\kappa_{\rm t}^2 + 2.310\kappa_{\rm V}^2 - 4.220\kappa_{\rm t}\kappa_{\rm V}) \times \sigma_{\rm tHW}^{\rm SM}$$
(2)

 $\begin{array}{cccc} t\bar{t}H, H \rightarrow b\bar{b} & tH, H \rightarrow b\bar{b} \\ \circ \\ \hline \mbox{Michael Waßmer} - \mbox{Latest results from t\bar{t}H and tH in } H \rightarrow b\bar{b} \mbox{ at CMS} \end{array}$

Backup 00 References 00000000 November 27, 2018 31/20

tH only limits

Michael Waßmer – Latest results from ttH and tH in H \rightarrow bb at CMS

 $t\bar{t}H, H \rightarrow b\bar{b}$

References 00000000 November 27, 2018