#### $R_{K^{*0}}$ measurement at LHCb Physics at the Terascale

Sarah Beranek, <u>Stephan Escher</u>, Christoph Langenbruch, Stefan Schael, Eluned Smith

RWTH Aachen, I. Physikalisches Institut B

November 27th, 2018



# Lepton flavour universality in rare decays

- In SM flavour-changing neutral current (FCNC) processes only allowed in loop diagrams
- Their small branching ratios  $\mathcal{B}$  make them sensitive to New Physics



control channel Feynman diagram

- This analysis measures the ratio of  $R_{K^{*0}} = \mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)/\mathcal{B}(B^0 \to K^{*0}e^+e^-),$ which is unity in SM due to lepton flavour universality
- The  $K^{*0}$  decays further into  $K^+\pi^-$
- Use  $B^0 o K^{*0} J/\psi( o \ell^+ \ell^-)$  tree-level decay as control channel
  - $\rightarrow$  develop and optimise analysis method

# LHCb Run 1 result

- LHCb result with Run 1 data published in JHEP 08 (2017) 055
- $R_{K^{*0}}$  shows a 2.4–2.5 $\sigma$  deviation from SM in two bins of  $q^2$
- A related measurement of the  $R_K$  ratio also lies under SM expectations



Goal: update analysis with Run 2 data

## LHCb detector



- Designed for heavy flavour decays
- Single arm forward spectrometer covering  $2 < \eta < 5$

# LHCb detector



• Momentum resolution  $\frac{\Delta p}{p} = (0.5 - 1)\%$ 

## LHCb detector



S. Escher (RWTH)

# Electromagnetic calorimeter

- Design: alternating scintillator planes and lead plates
- Energy resolution:  $\frac{\sigma_E}{E} \approx 1\% + \frac{9\%}{\sqrt{E(\text{ GeV})}}$



- Provides high  $p_{\mathrm{T}}$  electron, photon or  $\pi^0$  candidates for L0 trigger
- Crucial subdetector for bremsstrahlung recovery

# Reconstruction of electrons



- Electrons produce bremsstrahlung in large amounts
- Reconstruction of brem. photons limited by calorimeter resolution

# Trigger system

L0 hardware trigger used:

- For muonic decays: L0muon:  $p_{\rm T} > 1.76\,{\rm GeV}$  track in muon chamber
- For electronic decays: L0electron:  $E_{\rm T} > 3 \, {\rm GeV}$  hit in ECAL L0tis: events triggered on non signal particles



HLT trigger

- First reconstruction of tracks and vertices **12.5 kHz (0.6 GB/s) to storage**
- Selects events with > 1 high  $p_{\mathrm{T}}$  track(s)
- Performs a topological selection of (2 4)-body decays

# Electrons experimentally challenging

Plot of the di-lepton mass squared  $(q^2)$  vs. the reconstructed  $B^0$  mass on Run 1 data after full selection



 $\begin{array}{rcl} \mbox{Electron decay shows a lower yield} & \leftarrow & \mbox{lower trigger and reco. efficiency} \\ \mbox{and a much worse resolution} & \leftarrow & \mbox{high Bremsstrahlung} \end{array}$ 

## Electrons experimentally challenging

Plot of the di-lepton mass squared  $(q^2)$  vs. the reconstructed  $B^0$  mass on Run 1 data after full selection



 $B^0 \to K^{*0} J/\psi(\to \ell^+ \ell^-)$  control channel region  $B^0 \to K^{*0} \ell^+ \ell^-$  signal region

# Analysis strategy

- Starting with Run 1 analysis strategy
- Study possible improvements (background vetos, MC corrections, MVA...)
- Perform blinded analysis with Run 2 data

• Measure double ratio, where the tree-level decays  $B^0 \rightarrow K^{*0} J/\psi(\rightarrow \ell^+ \ell^-)$  are used as normalisation channels

$$R_{K^{*0}} = \underbrace{\frac{\mathcal{N}_{B^0 \to K^{*0} \mu^+ \mu^-}}{\mathcal{N}_{B^0 \to K^{*0} J/\psi(\to \mu^+ \mu^-)}} \cdot \underbrace{\frac{\mathcal{N}_{B^0 \to K^{*0} J/\psi(\to e^+ e^-)}}{\mathcal{N}_{B^0 \to K^{*0} e^+ e^-}}}_{\text{determined by fits}} \cdot \underbrace{\frac{\mathcal{E}_{B^0 \to K^{*0} J/\psi(\to \mu^+ \mu^-)}}{\mathcal{E}_{B^0 \to K^{*0} \mu^+ \mu^-}} \cdot \underbrace{\frac{\mathcal{E}_{B^0 \to K^{*0} e^+ e^-}}{\mathcal{E}_{B^0 \to K^{*0} J/\psi(\to e^+ e^-)}}}_{\text{determined via corrected MC samples}}$$

- Single ratio of resonant channels is unity (powerful cross-check)
- This way, many systematic uncertainties cancel

# Offline selection

Offline selection introduces many requirements on the events:

- · Good track quality of all final state particles
- Cut around nominal K<sup>\*0</sup> mass
- Transverse momentum threshold on all final states particles
- Positively identify all final state particles:  $K, \pi, \mu, e$



- Vetos against physical backgrounds
- Multivariate classifier to further reduce combinatorial background

# Semi-leptonic cascade background

• The decay  $B^0 \to (D^- \to K^{*0} e^- \overline{\nu_e}) e^+ \nu_e$  can be reconstructed as signal if  $\nu$ 's have low momenta



• This veto has an improved background rejection and signal efficiency

# Multivariate classifier (preliminary version)

- Boosted Decision Trees (BDT) are trained to reduce combinatorial bkg
- Trained 4 BDTs for  $\mu$ , e in Run 1 and Run 2 separately
- Signal: fully reconstructed and pre-selected signal MC
- Background: pre-selected data obtained from upper mass sideband



# Multivariate classifier (preliminary version)

- Boosted Decision Trees (BDT) are trained to reduce combinatorial bkg
- Trained 4 BDTs for  $\mu$ , e in Run 1 and Run 2 separately
- Signal: fully reconstructed and pre-selected signal MC
- Background: pre-selected data obtained from upper mass sideband



#### Run 1 data (left before BDT, right after BDT)



S. Escher (RWTH)



# $B^0 ightarrow {\cal K}^{*0} J\!/\!\psi$ control channel yields

- Tails of signal PDF fixed from fit to simulation
- Residual backgrounds from  $\Lambda_b \to pKJ/\psi$ ,  $B_s \to K^{*0}J/\psi$ and combinatorial are also modelled in the fit (more details in backup)
- Fit to data in  $J\!/\!\psi q^2$  region after full selection (right plot)



# $B^0 ightarrow {\cal K}^{*0} J\!/\!\psi$ control channel yields

- Tails of signal PDF fixed from fit to simulation
- Residual backgrounds from  $\Lambda_b \to pKJ/\psi$ ,  $B_s \to K^{*0}J/\psi$ and combinatorial are also modelled in the fit (more details in backup)
- Fit to data in  $J\!/\!\psi-q^2$  region after full selection (right plot)



 Run 2 control channel fits show increased electron yield due to improved selection

S. Escher (RWTH)



#### MC corrections

- Good data  $\leftrightarrow$  MC agreement required to calculate efficiencies
- Effects like low momentum photons challenging to simulate  $\rightarrow$  MC deviates from data in several observables
- MC corrections in three categories:
  - 1) Particle identification variables
  - 2)  $B^0$  kinematics and track multiplicity
  - 3) Trigger (not included in this talk)

# B<sup>0</sup> kinematics and track multiplicity

- Reweighting of  $p_T(B^0)$ ,  $\eta(B^0)$  and  $N_{\text{SPD hits}}$ ,  $N_{\text{Velo tracks}}$
- Determine weights on muon mode  $B^0 \to K^{*0} J\!/\!\psi(\to \mu\mu)$  between data and MC
- Weights calculated with iso-populated binned histograms
- Apply weights on both  $\mu\mu$  and *ee* MC samples



# Correction of particle identification variables

- Correct PID variables with clean data calibration samples
- Example: Probability that the kaon was a kaon



Residual differences will be covered by systematic uncertainty

## Conclusion

- Run 1 analysis successfully reproduced
- Many improvements already made: trigger, bkg. vetos, MVA, ...
- Electron yield significantly increased
- Analysis is already in a good shape
- A lot of work not shown today/still on-going

# backup

# Stripping line

- Run 1 data
- 2012 MC
- Stripping line *ee*: Bu2LLKeeLine2, version 21r1p1
- Stripping line μμ: Bu2LLKmumuLine, version 21r0p1

| type            | requirement                                                                                                                                                                                                                 |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B <sup>0</sup>  | $\begin{array}{l}  m-m_{B0}^{\rm PDG}  < 1000 \ {\rm MeV/c^2} \\ {\rm DIRA} > 0.9995 \\ \chi^2_{\rm IP}({\rm primary}) < 25 \\ {\rm end \ vertex \ } \chi^2/{\rm ndf} < 9 \\ \chi^2_{\rm B_{\rm flight}} > 100 \end{array}$ |
| K* <sup>0</sup> | $\begin{array}{l}  m-m_{B0}^{\rm PDG}  < 300  {\rm MeV/c^2} \\ p_T > 500  {\rm MeV/c} \\ \chi_{\rm IP}^2({\rm primary}) > 9 \\ {\rm origin \ vertex \ } \chi^2/{\rm ndf} < 25 \end{array}$                                  |
| к               | ${f DLL}_{K\pi}>-5\ \chi^2_{ m IP}({ m primary})>9$                                                                                                                                                                         |
| π               | $\chi^2_{\rm IP}({\rm primary}) > 9$                                                                                                                                                                                        |
| 11              | $\begin{array}{l} m < 55000 \; {\rm MeV/c^2} \\ {\rm end \; vertex \;} \chi^2/{\rm ndf} < 9 \\ \chi^2_{\rm DiLep_{flight}} > 16 \end{array}$                                                                                |
| $e, \mu$        | $p_T > \overline{300 \text{ MeV/c}}$<br>$\chi^2_{\text{IP}}(\text{primary}) > 9$                                                                                                                                            |
| μ               | isMuon                                                                                                                                                                                                                      |
| е               | $DLL_{e\pi} > 0$                                                                                                                                                                                                            |

#### Preselection

| type                                                | requirement                                                                                                                                                                           | sample                          |  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|
| all tracks                                          | $\chi^2/{ m ndof} < 3$<br>GhostProb $< 0.4$                                                                                                                                           | all                             |  |
| Κ,π<br>e                                            | $\begin{array}{l} \text{region}_{HCAL}^{L0CaloTool} \geq 0 \\ \text{region}_{ECAL}^{L0CaloTool} \geq 0 \end{array}$                                                                   | all<br>all <i>ee</i>            |  |
| е                                                   | $\begin{array}{l} !( \text{xProjection}_{\text{ECAL}}^{\text{LOCaloTool}} 363.6\text{mm} \\ \&\& \text{yProjection}_{\text{ECAL}}^{\text{LOCaloTool}}  < 282.6\text{mm}) \end{array}$ | all ee                          |  |
| K*0                                                 | $egin{aligned} & m({\cal K}\pi)-m_{{\cal K}^{st 0}}^{ m PDG}  < 100  { m MeV} \ &p_{T} > 4000  { m MeV}/\!{ m c}^2 \end{aligned}$                                                     | all<br>all (only L0H)           |  |
| all $\mu$                                           | hasRich<br>hasMuon<br>hasCalo                                                                                                                                                         | all<br>all $\mu\mu$<br>all $ee$ |  |
| $egin{array}{c} {\cal K},\pi \ \mu \ e \end{array}$ | $p_T > 250 \text{ MeV/c} \ p_T > 800 \text{ MeV/c} \ p_T > 500 \text{ MeV/c} \ p_T > 500 \text{ MeV/c}$                                                                               | all<br>all $\mu\mu$<br>all $ee$ |  |
| Κ<br>π<br>e                                         | $\begin{array}{l} {\sf ProbNNk} \cdot (1-{\sf ProbNNp}) > 0.05 \\ {\sf ProbNNpi} \cdot (1-{\sf ProbNNk}) \cdot (1-{\sf ProbNNp}) > 0.1 \\ {\sf ProbNNe} > 0.2 \end{array}$            | all<br>all<br>all <i>ee</i>     |  |

# Vetos against physical background

- Several  ${\it B}$  decays can be misidentified as signal decay
- These processes peak in some variable  $\rightarrow$  can be vetoed

| Used in Run 1 paper:                                                    |                                           |
|-------------------------------------------------------------------------|-------------------------------------------|
| type                                                                    | reconstructed as signal if                |
| $B^+ 	o K^+ (J\!/\!\psi 	o \ell \ell)$                                  | combined with a random $\pi$              |
| $B^0_s  ightarrow (\phi  ightarrow KK) (J\!/\!\psi  ightarrow$          | $\ell\ell)$ $K 	o \pi$ mis-identification |
| partially reconstructed                                                 | >=1 final state not reconstructed         |
| Improved vetos:                                                         |                                           |
| type                                                                    | reconstructed as signal if                |
| $B^0 	o K^{*0}(J\!/\!\psi 	o \ell\ell)$                                 | $H \leftrightarrow \ell$ double swap      |
| $B^0  ightarrow (D^-  ightarrow K^{*0} \ell^- \overline{ u_\ell}) \ell$ | $ u^+ u_\ell$ $ u$ carry low momenta      |
| New vetos:                                                              |                                           |
| type                                                                    | reconstructed as signal if                |
| $B^0 \rightarrow D^+ (\rightarrow K \pi \pi) \ell^- \nu$                | $\pi \rightarrow \ell$ mis-identification |
| $B^0  ightarrow D^0 ( ightarrow K\pi) \pi \ell  u$                      | $\pi \to \ell$ mis-identification         |
| S Escher (RW/TH)                                                        | R o analysis November 27th 201            |

#### BDT input variables

• first a BDT is run with 24 input variables to test their separation power

| particle                                  | Variables                                       |                                                                                                            |                                                                                                                        |                                                                                                                         |                      |                |
|-------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|
| Β <sup>0</sup><br>Κ*0<br>J/ψ<br>Κ/π<br>II | $p_T$ $p_T$ $p_T$ $min(p_{T,h})$ $min(p_{T,l})$ | $\begin{array}{c} \chi^2_{IP} \\ \chi^2_{IP} \\ \chi^2_{IP} \\ \max(p_{T,h}) \\ \max(p_{T,l}) \end{array}$ | $\begin{array}{c} \chi^2_{FD} \\ \chi^2_{FD} \\ \chi^2_{FD} \\ \min(\chi^2_{IP,h}) \\ \min(\chi^2_{IP,l}) \end{array}$ | $\begin{array}{c} \chi^2_{vtx} \\ \chi^2_{vtx} \\ \chi^2_{vtx} \\ max(\chi^2_{IP,h}) \\ max(\chi^2_{IP,l}) \end{array}$ | DIRA<br>DIRA<br>DIRA | $\chi^2_{DTF}$ |

#### **BDT** optimisation

- Calculate significance  $s = \frac{N_{sig}}{\sqrt{N_{sig} + N_{bkg}}}$
- N<sub>sig</sub>: fit control channel and estimate signal mode with branching fractions
- $f = \frac{\mathcal{B}(B^0 \to K^{*0} \mu \mu)}{\mathcal{B}(B^0 \to K^{*0} J/\psi)} = 0.0135$
- $N_{bkg}$ : fit in signal  $q^2$ -range and interpolate to  $B^0$ -signalrange



Fit of  $B^0 
ightarrow K^{*0} J\!/\!\psi(
ightarrow ee)$  simulation

- Performed to determine signal mass model
- Fit in three different bremstrahlung categories: Brem0: no brem. photon added to both e Brem1: 1 brem. photon added to one e Brem2: >= 2 brem. photons added
- Brem0 fitted with Crystall Ball (CB) function
   Brem1 and Brem2 fitted with sum of CB and Gauss function



Fit of  $B^0 o K^{*0} J\!/\!\psi( o ee)$  simulation

- Performed to determine signal mass model
- Fit in three different bremstrahlung categories: Brem0: no brem. photon added to both e Brem1: 1 brem. photon added to one e
  - Brem2: >= 2 brem. photons added

• Combined fit to full MC sample



# $\Lambda_b ightarrow p K(J\!/\!\psi ightarrow ee)$ fit modelling

- Reconstructed as signal if  $p 
  ightarrow \pi$  mis-identification occurs
- Using  $\Lambda_b o p \mathcal{K}(J/\psi o ee)$  MC after full selection
- MC corrected for pK phase space distribution
- Using weights determined in penta-quark analysis at LHCb (PhysRevLett.115.072001)
- Model background using superposition of Gaussian kernels



reweighting of pK phase space distribution

fit to dalitz weighted  $\Lambda_b$  bkg

S. Escher (RWTH)

 $R_{\kappa*0}$  analys

November 27th, 2018 28 / 20