Hybrid calculation of the lightest $CP\-$ even Higgs mass in the MSSM in FlexibleSUSY

Thomas Kwasnitza, Dominik Stöckinger, Alexander Voigt

27 November 2018, Hamburg

12th Annual Meeting of the Helmholtz Alliance "Physics at the Terascale"

Contents

FlexibleSUSY

FlexibleSUSY = tool for generating spectrum generators

- Computation of observables for (non-)supersymmetric extensions of the Standard Model
 - mass spectrum
 - mixings of particles
 - decays (coming soon)
- Details of the models are specified in a SARAH model file,
 - e.g. field content, gauge structure and (super)potential

- Difficulty: automatize computation Π_{ij} at higher loops and model independent
- Gives reliable predictions if M_S and M_t are not too far apart

- ullet Predicts Higgs mass reliably for large separation of M_t and M_S
- \bullet Difficulty: generalize computation of $\Delta\lambda^{(n)}$ in a model independent way for n>1

Hybrid calculation FlexibleEFTHiggs

• Obtain λ from pole mass matching at one loop

$$(M_h^2)^{\rm SM} = (M_h^2)^{\rm Full}, \qquad \qquad Q = M_S$$

Hybrid calculation FlexibleEFTHiggs

• Obtain λ from pole mass matching at one loop

$$(M_h^2)^{\rm SM} = (M_h^2)^{\rm Full}, \qquad \qquad Q = M_S$$

 \bullet Automatized derivation of $\Delta\lambda$ from self energies and tadpoles

FlexibleEFTHiggs beyond NLO and NLL

Goal: find threshold correction $\Delta \lambda^{(2,3)}$:

$$\lambda = \left. \frac{1}{(v^2)^{\mathsf{SM}}} \left[(M_h^2)^{\mathsf{Full}} - \Pi_h^{\mathsf{SM}} \right] \right|_{\mathsf{3L}}$$

FlexibleEFTHiggs beyond NLO and NLL

Goal: find threshold correction $\Delta \lambda^{(2,3)}$:

$$\lambda = \left. \frac{1}{(v^2)^{\mathsf{SM}}} \left[(M_h^2)^{\mathsf{Full}} - \Pi_h^{\mathsf{SM}} \right] \right|_{\mathsf{3L}}$$

- Explicit contributions: $\Pi_h^{(2,3)}$ in SM and full model
- Implicit contributions: from double loop expansion of SM parameters $P \in \{y_f, v, g_i, p^2\}$ in SM self energies $(\Pi_h^{(1,2)})^{\text{SM}}$

$$P^{\mathsf{SM}} = P^{(0)} + \Delta P^{(1)} + \Delta P^{(2)}$$
$$\Pi_h^{\mathsf{SM}} = \dots + \left[\frac{\partial}{\partial P} (\Pi_h^{(1,2)})^{\mathsf{SM}}\right] (\Delta P^{(1,2)}) + \dots$$

FlexibleEFTHiggs beyond NLO and NLL

Goal: find threshold correction $\Delta \lambda^{(2,3)}$:

$$\lambda = \left. \frac{1}{(v^2)^{\mathsf{SM}}} \left[(M_h^2)^{\mathsf{Full}} - \Pi_h^{\mathsf{SM}} \right] \right|_{\mathsf{3L}}$$

- Explicit contributions: $\Pi_h^{(2,3)}$ in SM and full model
- Implicit contributions: from double loop expansion of SM parameters $P \in \{y_f, v, g_i, p^2\}$ in SM self energies $(\Pi_h^{(1,2)})^{\text{SM}}$

$$P^{\mathsf{SM}} = P^{(0)} + \Delta P^{(1)} + \Delta P^{(2)}$$
$$\Pi_h^{\mathsf{SM}} = \dots + \left[\frac{\partial}{\partial P}(\Pi_h^{(1,2)})^{\mathsf{SM}}\right](\Delta P^{(1,2)}) + \dots$$

 \bullet Implementation of $\frac{\partial^i}{\partial P^i}(\Pi_h^{(j)})^{\rm SM}$ independent of full model

M_h in the MSSM at N³LO and N³LL

Note:

- Explicit 2L and 3L corrections are obtained in the limit $g_Y = g_2 = 0$ \rightarrow implicit contributions respect the same limit
- 3L self energy from FlexibleSUSY+Himalaya obtained without terms of $\mathcal{O}(\hbar^3 v^2/M_S^2)$

Numerical results MSSM

Numerical results MSSM

Numerical results: MSSM

- FlexibleEFTHiggs extension in MSSM: combined resummation of N³LL and inclusion of terms of $\mathcal{O}(\hbar^2 v^2/M_S^2)$
- Hybrid calculation interpolates between EFT and FO approach at 3L
- Outlook:
 - Estimation of uncertainties
 - Computation of threshold corrections is kept general
 - \Rightarrow method applicable for general models
 - \Rightarrow extension of matching corrections

- FlexibleEFTHiggs extension in MSSM: combined resummation of N³LL and inclusion of terms of $\mathcal{O}(\hbar^2 v^2/M_S^2)$
- Hybrid calculation interpolates between EFT and FO approach at 3L
- Outlook:
 - Estimation of uncertainties
 - Computation of threshold corrections is kept general
 - \Rightarrow method applicable for general models
 - \Rightarrow extension of matching corrections

Thanks for your attention!

Backup

New matching procedure in MSSM

$$M_f^{\mathsf{SM}} = M_f^{\mathsf{MSSM}} \qquad \qquad y_f^{\mathsf{SM}}$$

$$(M_V^{\mathsf{SM}})^2 = (M_V^{\mathsf{MSSM}})^2, \ (V = W, Z) \qquad \rightarrow \qquad g_{1,2}^{\mathsf{SM}}$$

$$\alpha_e^{\rm SM} = \alpha_e^{\rm MSSM} (1 - \Delta \alpha_e) \qquad \qquad v^{\rm SM}$$

$$\alpha_s^{\rm SM} = \alpha_s^{\rm MSSM} (1 - \Delta \alpha_s) \qquad \rightarrow \qquad g_s^{\rm SM}$$

$$(M_h^{\rm Full})^2 = (M_h^{\rm SM})^2 \qquad \qquad \rightarrow \qquad \lambda$$

1)SM 0L parameters obtained from 0L matching 2)SM 1L parameters obtained from 1L matching repeat 1) and 2) for $g_Y^{\text{MSSM}} = g_2^{\text{MSSM}} = 0$

• obtain λ at 2L and 3L