How to study models with several Higgs bosons

Markos Maniatis in collab. with Otto Nachtmann
UBB University Chile

Physics at the Terascale, DESY Hamburg 2018

Why study nHDM's?

- T. D. Lee introduced 2HDM getting CP violation.
- Dark matter models realized by nHDM's.
- Neutrino mixing models realized by nHDM's
- Supersymmetry requieres at least two doublets.
- Number of doublets not restricted.

- Suppose we have nHDM; we want to study

```
stability
global minima
electroweak symmetry breaking
symmetries
squared mass matrices
```

- Simple case one Higgs doublet

$$
V_{S M}=-\mu^{2} \varphi^{\dagger} \varphi+\lambda\left(\varphi^{\dagger} \varphi\right)^{2}
$$

- Electroweak symmetry breaking: $\mu^{2}>0$, stability: $\lambda>0$,
- Vacuum expectation value: $v_{0}=\sqrt{\frac{\mu^{2}}{\lambda}} \simeq 246 \mathrm{GeV}$.

Example of 3HDM

- 3 Higgs-boson doublets to generate ν masses and mixing.

$$
\varphi_{i}=\binom{\varphi_{i}^{+}}{\varphi_{i}^{0}}, \quad i=1,2,3
$$

W. Grimus, L. Lavoura and D. Neubauer, JHEP 0807, 051 (2008)

- Symmetry $O(2) \times \mathbb{Z}_{2} \cong \mathbb{Z}_{2}^{\prime} \times U(1) \times \mathbb{Z}_{2}$
- Potential

$$
\begin{aligned}
V_{O(2) \times \mathbb{Z}_{2}}=\mu_{0} \varphi_{3}^{\dagger} \varphi_{3}+\mu_{12}\left(\varphi_{1}^{\dagger} \varphi_{1}+\varphi_{2}^{\dagger} \varphi_{2}\right) & +\mu_{m}\left(\varphi_{1}^{\dagger} \varphi_{2}+\varphi_{2}^{\dagger} \varphi_{1}\right) \\
+a_{1}\left(\varphi_{3}^{\dagger} \varphi_{3}\right)^{2}+a_{2} \varphi_{3}^{\dagger} \varphi_{3}\left(\varphi_{1}^{\dagger} \varphi_{1}+\varphi_{2}^{\dagger} \varphi_{2}\right) & +a_{3}\left(\varphi_{3}^{\dagger} \varphi_{1} \cdot \varphi_{1}^{\dagger} \varphi_{3}+\varphi_{3}^{\dagger} \varphi_{2} \cdot \varphi_{2}^{\dagger} \varphi_{3}\right) \\
+a_{4} \varphi_{3}^{\dagger} \varphi_{1} \cdot \varphi_{3}^{\dagger} \varphi_{2}+a_{4}^{*} \varphi_{1}^{\dagger} \varphi_{3} \cdot \varphi_{2}^{\dagger} \varphi_{3} & +a_{5}\left(\left(\varphi_{1}^{\dagger} \varphi_{1}\right)^{2}+\left(\varphi_{2}^{\dagger} \varphi_{2}\right)^{2}\right) \\
& +a_{6} \varphi_{1}^{\dagger} \varphi_{1} \cdot \varphi_{2}^{\dagger} \varphi_{2}+a_{7} \varphi_{1}^{\dagger} \varphi_{2} \cdot \varphi_{2}^{\dagger} \varphi_{1}
\end{aligned}
$$

Bilinears

- Higgs doublets $\varphi_{i}=\binom{\varphi_{i}^{+}}{\varphi_{i}^{0}}, i=1, \ldots, n$,

$$
\phi=\left(\begin{array}{c}
\varphi_{1}^{\mathrm{T}} \\
\vdots \\
\varphi_{n}^{\mathrm{T}}
\end{array}\right)=\left(\begin{array}{c}
\varphi_{1}^{+} \varphi_{1}^{0} \\
\vdots \\
\varphi_{n}^{+} \varphi_{n}^{0}
\end{array}\right)
$$

- Arrange all $S U(2)_{L} \times U(1)_{Y}$ invariants into hermitian $n \times n$ matrix

$$
\underline{K}=\phi \phi^{\dagger}=\left(\begin{array}{ccc}
\varphi_{1}^{\dagger} \varphi_{1} & \cdots & \varphi_{n}^{\dagger} \varphi_{n} \\
\vdots & \ddots & \vdots \\
\varphi_{1}^{\dagger} \varphi_{n} & \cdots & \varphi_{n}^{\dagger} \varphi_{n}
\end{array}\right)
$$

- $\underline{K}=\phi \phi^{\dagger}$ is hermitian, positive semidefinite with rank ≤ 2.
- Basis for \underline{K} are generalized Gell-Mann matrices $\lambda_{\alpha}, \lambda_{0}=\sqrt{\frac{2}{n}} \mathbb{1}_{n}$

$$
\underline{K}=\frac{1}{2} K_{\alpha} \lambda_{\alpha}, \quad \alpha=0,1, \ldots, n^{2}-1
$$

- Building traces we extract the bilinears K_{α}
- Example 3HDM

$$
\begin{aligned}
\varphi_{1}^{\dagger} \varphi_{1} & =\frac{K_{0}}{\sqrt{6}}+\frac{K_{3}}{2}+\frac{K_{8}}{2 \sqrt{3}}, & \varphi_{1}^{\dagger} \varphi_{2} & =\frac{1}{2}\left(K_{1}+i K_{2}\right), \\
\varphi_{1}^{\dagger} \varphi_{3} & =\frac{1}{2}\left(K_{4}+i K_{5}\right), & \varphi_{2}^{\dagger} \varphi_{2} & =\frac{K_{0}}{\sqrt{6}}-\frac{K_{3}}{2}+\frac{K_{8}}{2 \sqrt{3}}, \\
\varphi_{2}^{\dagger} \varphi_{3} & =\frac{1}{2}\left(K_{6}+i K_{7}\right), & \varphi_{3}^{\dagger} \varphi_{3} & =\frac{K_{0}}{\sqrt{6}}-\frac{K_{8}}{\sqrt{3}} .
\end{aligned}
$$

- In the potential, bilinears and parameters are all real.
- One-to-one correspondance between Higgs-boson doublets and Hermitean matrix K with rank ≤ 2.
- nHDM potential can be written with $K_{0}, K=\left(\begin{array}{c}K_{1} \\ \vdots \\ K_{n^{2}-1}\end{array}\right)$

$$
V=\xi_{0} K_{0}+\xi^{\mathrm{T}} \boldsymbol{K}+\eta_{00} K_{0}^{2}+2 K_{0} \eta^{\mathrm{T}} \boldsymbol{K}+\boldsymbol{K}^{\mathrm{T}} E \boldsymbol{K},
$$

avoid unphysical gauge degrees of freedom. real parameters.
reduce power of potential.

Change of basis

- Consider the following unitary mixing of the doublets

$$
\left(\begin{array}{c}
\varphi_{1}(x)^{\mathrm{T}} \\
\vdots \\
\varphi_{n}(x)^{\mathrm{T}}
\end{array}\right) \rightarrow U\left(\begin{array}{c}
\varphi_{1}(x)^{\mathrm{T}} \\
\vdots \\
\varphi_{n}(x)^{\mathrm{T}}
\end{array}\right)
$$

- Bilinears transform as

$$
K_{0} \rightarrow K_{0}, \quad K \rightarrow R(U) K,
$$

with $U^{\dagger} \lambda_{a} U=R_{a b}(U) \lambda_{b}, R \in S O\left(n^{2}-1\right)$, proper rotations in K-space.

Symmetries

- Symmetry desirable to restrict nHDM.
- Symmetries easily formulated in terms of bilinears.

$$
V=\xi_{0} K_{0}+\xi^{\mathrm{T}} \boldsymbol{K}+\eta_{00} K_{0}^{2}+2 K_{0} \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{K}+\boldsymbol{K}^{\mathrm{T}} E \boldsymbol{K}
$$

- Transformation $K_{0} \rightarrow K_{0}, K \rightarrow \bar{R} K, \bar{R} \in O\left(n^{2}-1\right)$ is symmetry of potential iff

$$
\xi=\bar{R} \xi, \quad \eta=\bar{R} \eta, \quad E=\bar{R} E \bar{R}^{\mathrm{T}}
$$

- $\bar{R} \in O\left(n^{2}-1\right)$, keeping kinetic terms invariant.
I. F. Ginzburg, M. Krawczyk, PRD 72 (2005)
I. P. Ivanov and C. C. Nishi, PRD 82 (2010)

MM, O. Nachtmann, JHEP 11151 (2011)
V. Keus, S.F. King, S. Moretti, JHEP 1401 (2014)
B. Grzadkowski, MM, J. Wudka, JHEP 1111 (2011)
P. M. Ferreira, H. E. Haber, MM, O. Nachtmann, J. P. Silva, Int.J.Mod.Phys. A26 (2011)

CP symmetry

- CP transformation of the doublet fields

$$
\varphi_{i}(x) \longrightarrow \varphi_{i}^{*}\left(x^{\prime}\right), \quad i=1, \ldots n, \quad x=(t, \boldsymbol{x})^{\mathrm{T}}, \quad x^{\prime}=(t,-\boldsymbol{x})^{\mathrm{T}}
$$

- In terms of bilinears

$$
K_{0}(x) \longrightarrow K_{0}\left(x^{\prime}\right), \quad K(x) \longrightarrow \bar{R} \boldsymbol{K}\left(x^{\prime}\right)
$$

- \bar{R} is defined by the (generalized) Gell-Mann matrices

$$
\lambda_{a}^{\mathrm{T}}=\bar{R}_{a b} \lambda_{b}, \quad a, b \in\left\{1, \ldots, n^{2}-1\right\} .
$$

THDM: $\quad \bar{R}=\operatorname{diag}(1,-1,1)$,
3HDM: $\quad \bar{R}=\operatorname{diag}(1,-1,1,1,-1,1,-1,1)$

- CP symmetry conditions

$$
\xi=\bar{R} \xi, \quad \eta=\bar{R} \eta, \quad E=\bar{R} E \bar{R}^{\mathrm{T}} .
$$

- CP symmetry respected by vacuum if

$$
\bar{R}\langle\boldsymbol{K}\rangle=\langle\boldsymbol{K}\rangle
$$

- Basis invariance condition, generalized CP studied in THDM.

```
C. Nishi PRD 74 (2006),
MM, A. Manteuffel, O. Nachtmann, EPJC57 (2008)
P. M. Ferreira, H. E. Haber, MM, O. Nachtmann, J. P. Silva, Int.J.Mod.Phys. A26 (2011)
```


Study of the nHDM

- Concise conditions for stability given.
- Stationarity equations coresponding to electroweak symmetry breaking behavior.
- Sets of equations solvable in Groebner bases approach or homotopy continuation.
- Bilinears have been applied e.g. to 3HDM, NMSSM.

MM, O. Nachtmann, PR D92 7 (2015)

Conclusion

- Bilinears are powerful tool in the nHDM.

