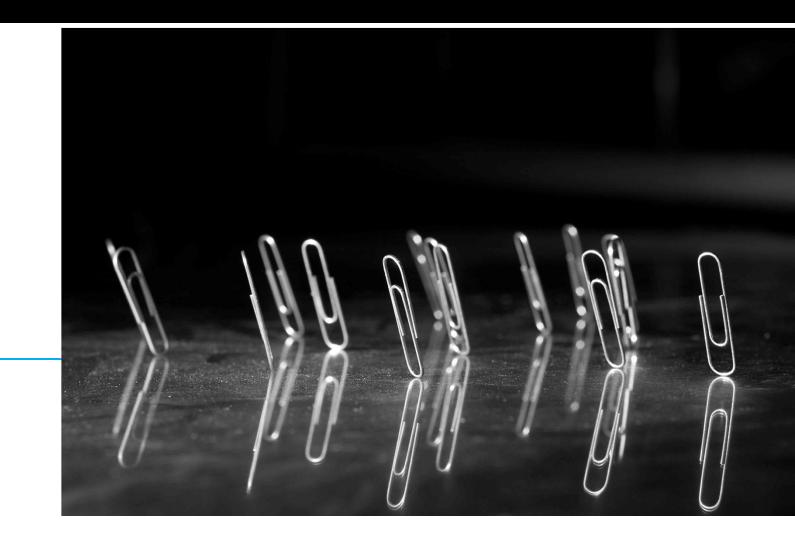
℀TRIUMF

Lorentz force induced oscillations

Ramona Leewe, Ken Fong, TRIUMF

TTC meeting 2019

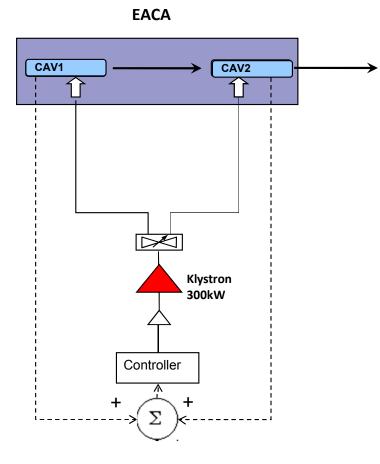


04/02/2019

Overview

- TRIUMF's e-linac driving configuration
- First operational experiences
- Mathematical formulation for Lorentz force oscillation on a single cavity
- Stability analysis/ oscillation growth rate (linearized system)
- Limit cycle analysis
- Nonlinear Lyapunov stability
- Simulations
- What can we do with these information?
- Conclusions

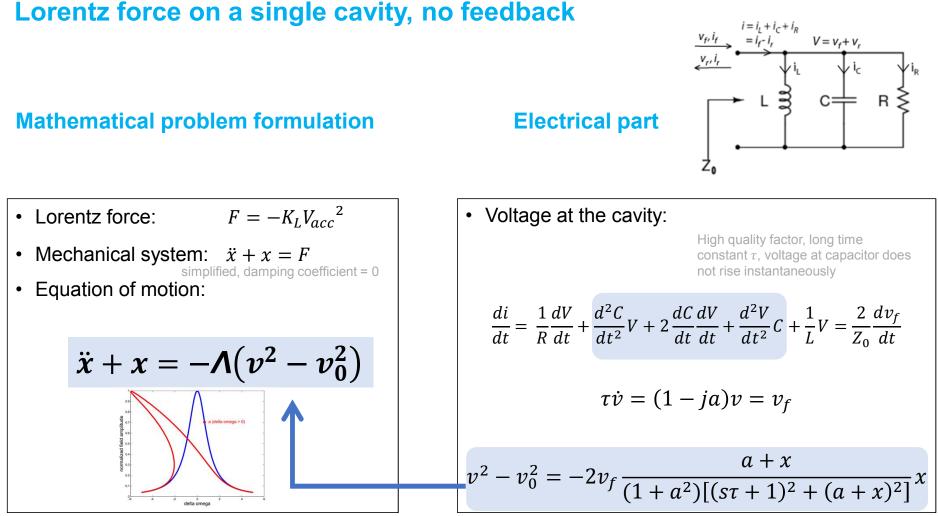
TRIUMF's e-linac driving configuration



 TRIUMF's e-Linac acceleration cryomodule, consists of 2 TESLA type cavities and is operated with a single klystron in CW mode and vector sum control.

Operational experience

- Amplitude oscillation in both cavities (operational gradient dependent)
 - Vector sum perfectly stable
 - Oscillation frequency $\approx 160 \ Hz$
 - Cavity bandwidth $\approx 300 Hz$
 - Time to grow oscillations
 ≈ 6 10 sec



Ramona Leewe, Ken Fong

6

Lorentz force on a single cavity, no feedback

Mechanical system

System linearization

- No damping and no external force
- $\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
 - Eigenvalues $\pm i$, circle with radius 1 in the phase space
- Adding perturbation, Lorentz force

•
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} F = 0 \\ -G \end{pmatrix}$$

• Or more general

$$\dot{x} = f(x, y) = -y$$
$$\dot{y} = g(x, y) = x - G$$

 Calculating the Jacobian and evaluate at x,y=0

•
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & -\frac{dG}{\partial y}_{x,y=0} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• Perturbation modifies the trajectory and becomes either a stable or unstable spiral

•
$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & -\mu \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• $\mu = \Lambda 4 v_f^2 \frac{a}{1+a} \frac{\tilde{\omega}^3}{(\tilde{\omega}^2+1)^2}$

 $\widetilde{\omega} = ratio \ of \ the$ electrical bandwidth to the mechanical oscillation frequency

Stability analysis of the linearized system

Eigenvalue analysis

Growth rate

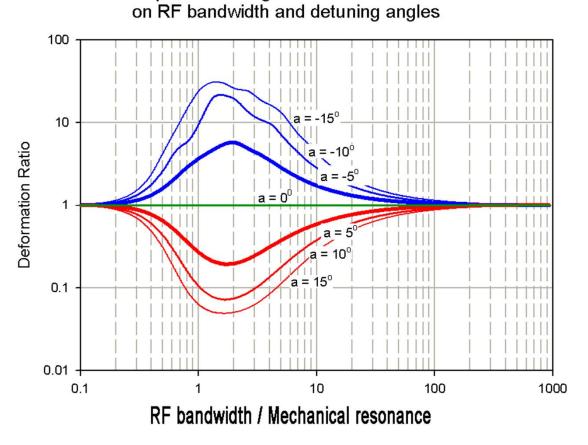
System is stable, if real part of eigenvalues is negative
λ_{1,2} ≈ -2Λν_f² a/(1+a²) ω³/(ω²+1)² ± i
Linearized system has an unstable spiral center at (0,0) for a < 0 and a stable spiral center for a > 0

•
$$R \cong -2\Lambda v_f^2 a \frac{\tilde{\omega}^3}{(\tilde{\omega}^2+1)^2}$$

• Lorentz force constant Λ
• Squared driving voltage v_f^2
• Amount of detuning $a = \frac{\omega_0 - \omega}{\tilde{\omega}}$
• Max. growth rate $\tilde{\omega} = \sqrt{3} \cong 1.7$

Oscillation growth\decay rate of the nonlinear system

Dependence of growth



simulation results of the nonlinear system

Limit cycle existence of the nonlinear system by proof of Poincare-Andronov-Hopf bifurcation

Conditions for limit cycle existence

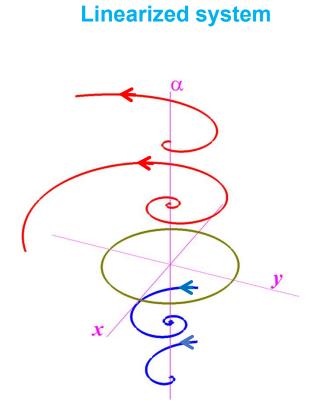
Lorentz force system

- 1. Has a pair of purely imaginary eigenvalues
- 2. During a parametric change, the critical point changes from a stable to an unstable spiral or vice versa
- Whether the bifurcation is sub or supercritical is determined by the sign of the first Lyapunov coefficient

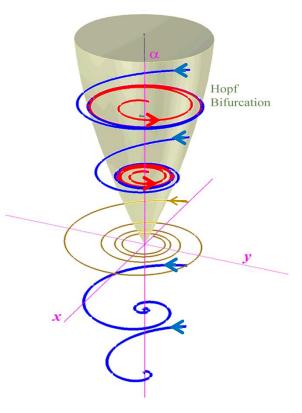
1.
$$\lambda_{1,2} \approx -2\Lambda v_f^2 \frac{a}{1+a^2} \frac{\tilde{\omega}^3}{(\tilde{\omega}^2+1)^2} \pm i$$

 $\lambda_{1,2} \approx -\alpha \pm i\beta$
for $\alpha = 0$ $a = 0$
2. $\frac{d\alpha}{da_{a=0}} = d \neq 0;$ $d = -2\Lambda v_f^2 \frac{\tilde{\omega}^3}{(\tilde{\omega}^2+1)^2}$
3. $L1|_{a=0} = -(\Lambda v_f^2)^2 \frac{\tilde{\omega}^3}{(\tilde{\omega}^2+4)} < 0$ Supercritical, stable limit cycle

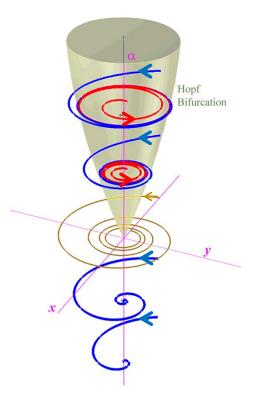
Supercritical Hopf Bifurcation with a stable limit cycle



Nonlinear system

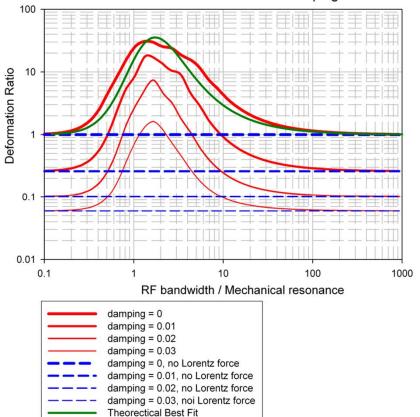


Supercritical Hopf Bifurcation with a stable limit cycle



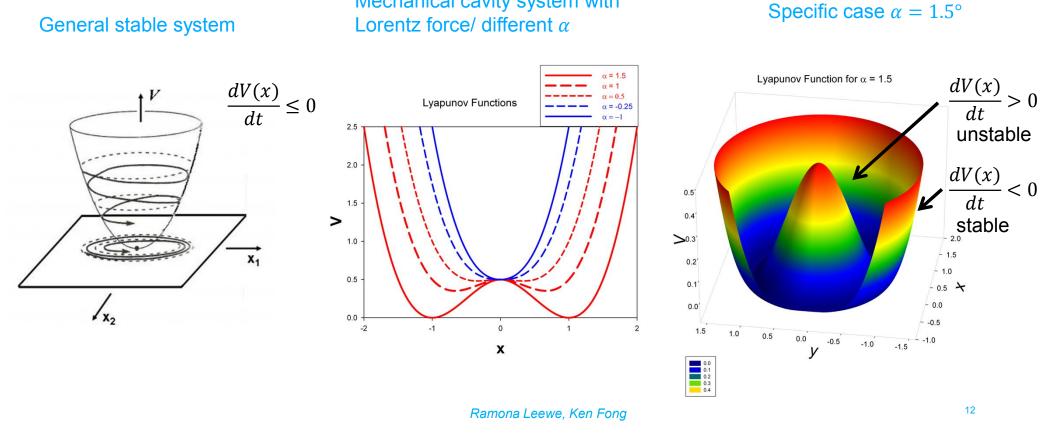
- Unstable within the cone (a > 0), small initial conditions
- Considering damping
 - Cone position moves with increasing damping coefficient along the 'a-Axis'
 - Increases system stability

Dependence of Growth on RF bandwidth and mechanical damping



Lyapunov stability/ nonlinear system (Lyapunov functions may be considered as energy functions)

Mechanical cavity system with



Simulations

Matlab/simulation equations

$$\ddot{x} + c\dot{x} + \Omega^2 x = -\Lambda(\nu^2 - \nu_0^2)$$

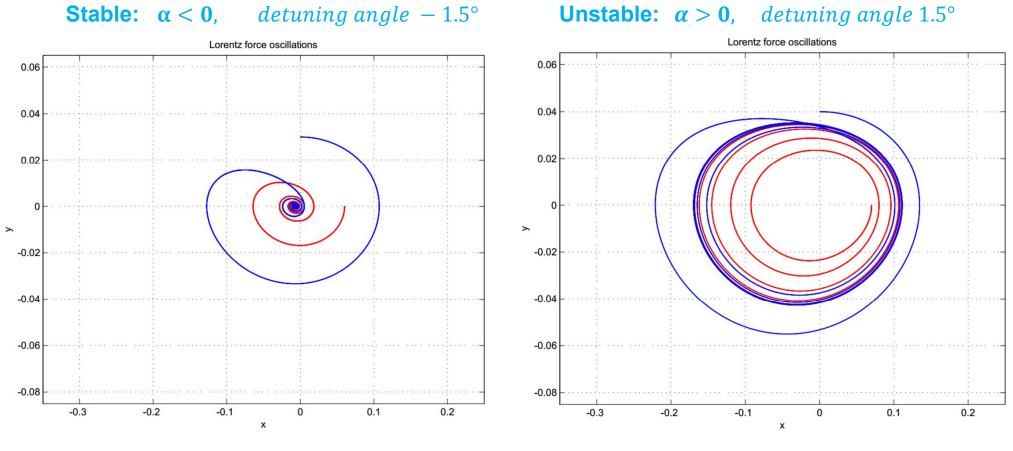
- Damping included
- 4 state variables
 - Voltage signal split into in phase and in quadrature

$$\dot{x} = -y$$

$$\dot{y} = cy - \Omega^2 x - \Lambda \left(v_i^2 + v_q^2 - v_0^2 \right)$$

$$\dot{v}_i = -\widetilde{\omega} \left(v_i - (a + x)v_q - v_i \right)$$

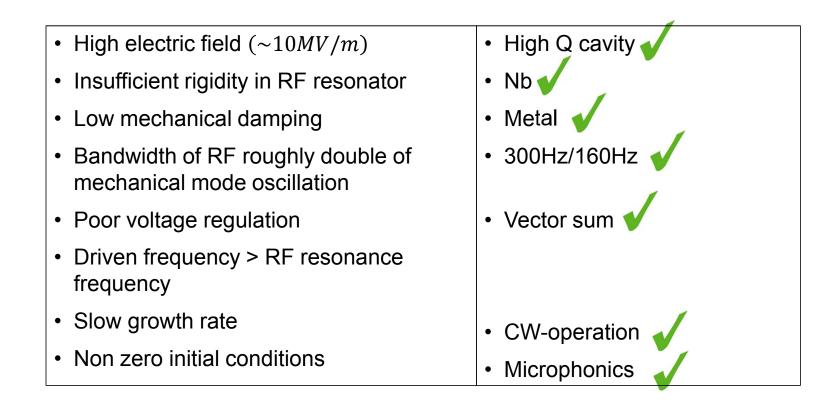
$$\dot{v}_q = -\widetilde{\omega} \left((a + x)v_i + v_q \right)$$



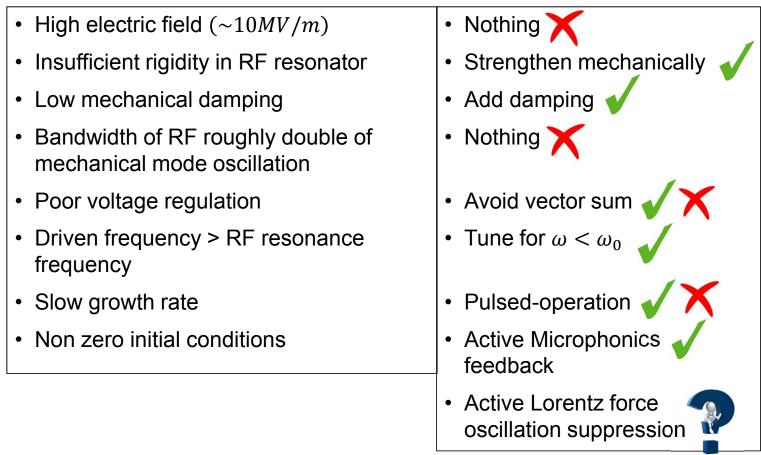
Ramona Leewe, Ken Fong

14

Conditions for Oscillations in RF cavity due to Lorentz force



What can we do to suppress these instabilities?



Conclusion and lookout

- Field oscillation can occur at high field gradients
- It has a slow rise time
- First observed at TRIUMF's e-LINAC in summer 2018
- It is suppressed under certain conditions
- Active Lorentz force oscillation suppression feasible?
 - Lorentz force affects the cavity acceleration (not the position)
 - What variable could be measured?
 - Phase lag between the mechanical detune and the electrical response
 - $\dot{x} = y + \dot{F}$, F = feedback, $\dot{y} = x + G$, F = feedback,

piezo is affecting the position, not a trivial cancellation feedback problem

A deeper analysis of the presented results with respect to a feedback tuning system will be necessary

Thank you for your consideration!

Simulation results (increased detuning angle)

