
FIVE
In this session we will look at an example from 10 dimensional gravity. The problem

was posed to me by Ivano Lodato and Nabamita Banerjee and the program was made in
collaboration with them. For more information about the physics see:
”The fate of flat directions in higher derivative gravity” by Nabamita Banerjeea, Suvankar
Dutta, Ivano Lodato. JHEP 1305 (2013) 027, e-Print: arXiv:1301.6773 [hep-th].

Gravity projects usually bring some problems with them:

• They work with upper and lower indexes.

• They need all their vector and tensor components to be written explicitly.

• They have objects with many indexes.



In all gravity problems we start with a metric tensor and as explained before, we have to
specify all the tensor components. Because we will be working in 10 dimensions that means
that we have to specify 100 components. Some of these components will be formulas with
variables in them, and most of them will be zero. We will use a table to specify the metric
tensor, and we will use a very special technique to fill the table. In principle we could fill
this table with fill statements, but we will see many more tables in this project, some with
thousands of non-zero elements and there we will not have much choice.

We start with a number of declarations and put them in a file declare.h so that we do not
have to repeat them all the time. Every once in a while we will add some extra lines to that
file. The last two lines of the file will always be

Format nospaces;

.global

As we have seen before, the .global means that all declarations will remain valid after a .store
instruction.



We start the declare.h file with the declarations

*

* File with declarations for 10-dimensional gravity in

* session 5 of the FORM course.

*

Dimension 10;

Symbols d1,d2,L,mu,rho,scqmu;

Symbols sint1,cost1,sint2,cost2;

AutoDeclare index i;

AutoDeclare symbol x;

AutoDeclare CFunction t,w,T,five;

CTable,zerofill,G(1:10,1:10);

CTable,zerofill,GI(1:10,1:10);

*

Format nospaces;

.global

We see a few new types of declarations here. First there is the dimension statement. This
sets the default dimension. The default dimension is the dimension that is assigned to indexes



when we do not specify any dimension during their declaration. Here we say that all indexes
will be in 10 dimensions.

Next there are the autodeclare statements. They are comparable to the implicit statement
in FORTRAN, but with more flexibility. In the C language there is no equivalent. If we
specify

AutoDeclare index i;

all objects that Form encounters which start with the character i and have not been declared
previously, will be automatically declared to be an index. And of course they will have the
default dimension, because we did not specify a dimension. One is not restricted to a single
character here. One could for instance make another statement

AutoDeclare symbol ijk;

This gives no conflict. What will happen is that if an undeclared object has a name that
starts with ijk, it will be declared a symbol, and if its name starts with an i but not with
ijk, it will become an index. The more restrictive condition takes precedence. Hence in the
third autodeclare statement we have the string ‘five’, and therefore if the name of a previously
undeclared variable starts with five, it will be seen as a commuting function, but if a name
starts with fi or just f and it does not start with five, it is just an undeclared variable.



We use the autodeclare usually when we want to use lots of variables of a given type, but
do not know yet what their exact names will be, or how many there will be.

The next declarations are the table declarations. G will be the metric tensor with lower
indexes and GI will be its inverse, or the tensor with upper indexes. After all

gµνgνρ = δµρ

with δµρ = 1 when µ = ρ and zero otherwise.
The declarations of the tables contain the option zerofill. This means that all elements of

the table that have not been defined at the moment the table is used, will be assumed to be
zero. This way we only have to specify the non-zero elements.



We start with the program

#-

#include declare.h

*

Local Fg =

+tg(1,1)*(-d2/L^2+mu/d2)

+tg(2,2)*(L^2*d2*rho^2/d1)

+tg(3,3)*(L^2)

+tg(4,4)*(L^2*sint1^2)

+tg(5,5)*(L^2*cost1^2)

+tg(6,6)*(L^2*cost2^2*sint1^2)

+tg(7,7)*(L^2*sint1^2*sint2^2)

+tg(8,8)*(d2)

+tg(9,9)*(d2)

+tg(10,10)*(d2)

+(tg(1,5)+tg(5,1))*(-L*scqmu*cost1^2/d2)

+(tg(1,6)+tg(6,1))*(-L*scqmu*cost2^2*sint1^2/d2)

+(tg(1,7)+tg(7,1))*(-L*scqmu*sint2^2*sint1^2/d2)



;

Print +f;

Bracket tg;

.end

We define here an expression and we have the (commuting) function tg with two arguments
to mark which element of the table they will eventually become. Note that tg will be declared
as a commuting function due to an autodeclare statement.

The #- instruction turns off the listing of the input. For long programs that is often a good
idea. With #+ one can turn it on again. How do we make a table from this? This is done
by replacing the last three lines of the previous program by

Bracket tg;

.sort

Fillexpression G = Fg(tg);

.

.

The dots mean that we will add more code below. The FillExpression statement defines the
contents of the table G by the contents of the brackets of the expression Fg, provided Fg has
been bracketted in tg and the arguments of tg indicate the table elements to be specified.



This is a quick way to fill a whole table from an expression. The opposite can be obtained
with the table function (see manual).



So now we have the metric tensor in a table and we have to determine the inverse of this
tensor cq. matrix. Before we do this we should remark that there are some relations between
the parameters in the metric tensor. They are

d2 = q + rho^2

d1 = d2^3 - rho^2*L^2*mu

scqmu^2 = q*mu

There are various ways by which we can compute the inverse of a matrix. One is by defining
a matrix with 100 entries aij, multiply our matrix by it, setting the result equal to the unit
matrix and solve the 100 equations. Another is by calculating minors and the determinant.
Let us make an inventory to see how complicated it is to calculate the determinant. We could
try to do this by writing all 10! terms, but because most elements of the matrix are zero we
will be generating mainly zeroes. You will see we can do a whole lot better by using this fact.



Consider the following general purpose procedure

#procedure determ(F,T,N)

*

* Routine evaluates the determinant of the NxN matrix

* in table T. The result will be in expression F.

* The method used is: Define the 1x1 minors in the

* last column Then make the 2x2 minors from the last

* two columns. Etc. The minors are indicated by

* the indexes in the Levi-Civita tensor e_. Hence

* the coefficient of e_(2,3,5) is the minor in the

* last three columns made from the entries in the

* rows 2, 3 and 5. In this method no minor has to be

* evaluated twice and no unneeded information is kept.

* The trick with the ’Keep Brackets’ makes that

* zeroes are detected as quickly as possible.

*



Local ‘F’ = <e_(1)*‘T’(1,1)>+...+<e_(‘N’)*‘T’(1,‘N’)>;

#do k = 1,{‘N’-1}

id e_(i1?,...,i‘k’?) =

#do i = 1,‘N’

+e_(‘i’,i1,...,i‘k’)*‘T’({‘k’+1},‘i’)

#enddo

;

Bracket e_;

.sort: determ at step ’k’;

Skip;

NSkip ‘F’;

Keep Brackets;

#enddo

id e_(1,...,‘N’) = 1;

#endprocedure

Because the routine is properly commented it should not be too difficult to figure out how it
works. It is amazing how efficient it is.



.sort

FillExpression G = Fg(tg);

Drop;

.sort

#call determ(Fdet,G,10)

.sort

id scqmu^2 = mu*q;

repeat id d2^3 = d1+mu*L^2*(d2-q);

AntiBracket sint1,cost1,sint2,cost2;

Print +f +s;

.end

We add the above lines to our program and run it, curious how complicated the running will
be. The answer is rather amazing:

Time = 0.00 sec Generated terms = 11

Fdet Terms in output = 5

Bytes used = 348

Fdet=



+d1^-1*d2^2*L^12*mu*rho^2*q*(

-sint1^6*cost1^2*sint2^2*cost2^2

+sint1^6*cost1^4*sint2^2*cost2^2

+sint1^8*cost1^2*sint2^2*cost2^4

+sint1^8*cost1^2*sint2^4*cost2^2

)

+d2^2*L^10*rho^2*(

+sint1^6*cost1^2*sint2^2*cost2^2

);

The other statistics, printed during evaluation of the determinant never have more than 17
terms generated in one module. It is hardly any work! The answer is still not something
that we like to have in a denominator though. Inspection shows however that we should
manipulate the sin’s and the cos’s a bit. How can we do that? If we just say

id sint2^2 = 1-cost2^2;

id sint1^2 = 1-cost1^2;

the spectator powers will blow up. We will have to be more sophisticated. We can do this by
some typical Form algorithms. Replace the last three lines by the following code (we have



put lots of print statements and .sort’s to show what is happening).

AntiBracket sint1,cost1,sint2,cost2;

.sort

CFunction acc;

Collect acc;

Print +f +s;

.sort

Fdet=

+acc(-sint1^6*cost1^2*sint2^2*cost2^2+sint1^6*cost1^4*sint2^2

*cost2^2+sint1^8*cost1^2*sint2^2*cost2^4+sint1^8*cost1^2*

sint2^4*cost2^2)*d1^-1*d2^2*L^12*mu*rho^2*q

+acc(sint1^6*cost1^2*sint2^2*cost2^2)*d2^2*L^10*rho^2

;

The collect statement writes the contents of the brackets as arguments of the indicated func-
tion. Hence we have now two terms left.

Factarg acc;



Print +f +s;

.sort

Fdet=

+acc(sint1,sint1,sint1,sint1,sint1,sint1,cost1,cost1,sint2,

sint2,cost2,cost2)*d2^2*L^10*rho^2

+acc(sint1,sint1,sint1,sint1,sint1,sint1,cost1,cost1,sint2,

sint2,cost2,cost2,-1+cost1^2+sint1^2*cost2^2+sint1^2*sint2^2)

*d1^-1*d2^2*L^12*mu*rho^2*q

;

FactArg will factorize the arguments of acc and write each factor as an argument of the
function. Hence the acc function has now lots of arguments.

ChainOut acc;

Print +f +s;

.sort

Fdet=

+acc(sint1)^6*acc(cost1)^2*acc(sint2)^2*acc(cost2)^2*d2^2*



L^10*rho^2

+acc(sint1)^6*acc(cost1)^2*acc(sint2)^2*acc(cost2)^2*acc(-1+

cost1^2+sint1^2*cost2^2+sint1^2*sint2^2)*d1^-1*d2^2*L^12*mu*

rho^2*q

;

Chainout will write each argument of acc as a separate occurrence of the function acc with
that argument.

id acc(x?symbol_) = x;

id acc(x?number_) = x;

Argument acc;

id sint1^2 = 1-cost1^2;

id sint2^2 = 1-cost2^2;

EndArgument;

Print +f +s;

.sort

Fdet=

+d2^2*L^10*rho^2*sint1^6*cost1^2*sint2^2*cost2^2



+acc(0)*d1^-1*d2^2*L^12*mu*rho^2*q*sint1^6*cost1^2*sint2^2*

cost2^2

;

id acc(x?number_) = x;

Print +f +s;

.end

Fdet=

+d2^2*L^10*rho^2*sint1^6*cost1^2*sint2^2*cost2^2

;

Each occurrence of acc that has only a single object can be written out again, and in the
remaining occurrence we can now use the relations for sines and cosines. Lo and behold, it
gives an argument zero! Hence in the end we have only a single term. This is very nice,
because it means that our inverse matrix has only simple denominators.



Next we have to calculate the 100 minors. What we need is that when we calculate the
(i,j) minor, rather than just substituting G(i,j) we should add tgi(i,j) and insist at the
end that tgi be present only once. Hence we can modify the determ procedure so that it
calculates simultaneously the determinant and all minors. This is done with:



#procedure minors(F,T,minor,N)

*

Symbol xinv(:1);

Local ‘F’ = <e_(1)*(‘T’(1,1)+‘minor’(1,1)*xinv)>+...+

<e_(‘N’)*(‘T’(1,‘N’)+‘minor’(1,‘N’)*xinv)>;

#do k = 1,{‘N’-1}

id e_(i1?,...,i‘k’?) =

#do i = 1,‘N’

+e_(‘i’,i1,...,i‘k’)*(‘T’({‘k’+1},‘i’)

+‘minor’({‘k’+1},‘i’)*xinv)

#enddo

;

Bracket e_;

.sort: minors at step ’k’;

Skip;

NSkip ‘F’;

Keep Brackets;

#enddo



id e_(1,...,‘N’) = 1;

.sort: minors completion;

if ( count(xinv,1) == 0 ) Multiply ‘minor’(0,0);

id xinv= 1;

#endprocedure

We have stripped the commentary here as it would be nearly identical to the commentary
in determ. The symbol xinv will make sure that no term will have more than one minor
indicator. In the end the term that has no minor indicator is the determinant. We mark that
as minor(0,0).

Also this routine is very fast, but simplifying the output using the relations between the
variables is a bit more work. Hence it is best to make a procedure that does this in as general
a way as possible. We will need that procedure many times for this project.



There are two things we need to simplify:

1. The sin/cos systems.

2. The d1/d2/rho/q systems.

In addition we have to take into account that there may be negative powers of some objects.
The first thing to do is to simplify the sin/cos system. If this would be the only simplification

needed we can make the following procedure:



#procedure simsincos

*

* Procedure simplifies combinations of sin and cos.

* First we try ’at ground level’

*

id cost1^2 = 1-sint1^2;

id cost2^2 = 1-sint2^2;

*

AntiBracket sint1,cost1,sint2,cost2;

.sort: simsincos-1;

*

* Now we collect the powers in a function acc.

*

Collect acc;

FactArg,acc;

Chainout,acc;

id acc(-1+sint1)*acc(1+sint1) = -cost1^2;

id acc(-1+sint2)*acc(1+sint2) = -cost2^2;



*

* This is all we can do here.

*

id acc(x?) = x;

.sort: simsincos-2;

#endprocedure

What we do here is first write everything to a unique form. Then we collect the occurrences
of the sin/cos variables into the function acc and we factorize the arguments. A number of
symbols and coefficients will be overal factors, but what we are really after is how to apply the
relation sin2 + cos2 = 1. This means that we want to rewrite a factor 1− sin2 but not a facter
sin2. Of course 1− sin2 will be factorized further. The ChainOut statement makes that those
factors will be separate occurrences of the function acc. Hence the way the id-statements are
written. Note that in expressions like

2-sint1^2+sint1^2*sint2^2

such simplifications cannot take place. On the whole the routine does however a decent job.
When we have a term with

acc(sint1^-2+cost1^-2-sint1^-2*cost1^-2)



it is pulled over a common denominator in the factarg statement. Hence the procedure will
find this to be zero.

The more difficult procedure is the one that has to deal with the other relations. Because
that is a somewhat more complicated system, it is much harder to have a decent result. In
addition we may have negative powers in a more complicated way.

The proper thing to do is to pull all candidate terms over a common denominator. Hence
the start of the main simplification procedure is



#procedure simd1d2

id scqmu^2 = q*mu;

id scqmu^-2 = 1/q/mu;

id d1 = d2^3-rho^2*L^2*mu;

id d2 = q+rho^2;

.sort: simd1d2-1;

#call simsincos

AntiBracket d1,d2,L,mu,q,rho,sint1,sint2,cost1,cost2;

.sort: simd1d2-2;

Collect acc;

#do d = {d1,d2,rho,L,sint1,cost1,sint2,cost2}

$‘d’ = 0;

#enddo

Argument acc;

#do d = {d1,d2,rho,L,sint1,cost1,sint2,cost2}

if ( count(‘d’,-1) > $‘d’ ) $‘d’ = count_(‘d’,-1);

#enddo

EndArgument;



Multiply 1

#do d = {d1,d2,rho,L,sint1,cost1,sint2,cost2}

*‘d’^$‘d’/d‘d’^$‘d’

#enddo

;

id acc(x?) = x;

id q = d2-rho^2;

id d2^3 = d1+rho^2*L^2*mu;

.sort: simd1d2-3;

#call simsincos

We start with trying to minimize the number of terms by writing out some relations. Next
we hunt for simple combinations of sin/cos. Then comes the collection of the denominators:
we antibracket in all variables that are part of the rewriting and put those brackets inside the
function acc. Then we look for the maximum powers of the potential denominators. This is
done with a special do-loop construction. If we define the loop with

#do d = {d1,d2,rho,L,sint1,cost1,sint2,cost2}

$‘d’ = 0;

#enddo



the loop variable will take successively the string values d1, d2 etc. If one of the $-variables,
say $d1, ends up positive, we multiply by d1^$d1/dd1^$d1 and at the end of the procedure
we will replace dd1 by d1. Because we have gotten new occurrences of the denominators in
the numerators we need to apply some identities again. Then we look again in the sin/cos
system. The remaining part of the procedure is

AntiBracket d1,d2,L,mu,q,rho;

.sort: simd1d2-4;

Collect acc;

FactArg acc;

ChainOut acc;

id acc(x?number_) = x;

id acc(x?symbol_) = x;

Argument acc;

id q = d2-rho^2;

repeat id d2^3 = d1+rho^2*L^2*mu;

EndArgument;

FactArg acc;

ChainOut acc;



id acc(x?symbol_) = x;

id acc(x?number_) = x;

Argument acc;

id d2*L^2*mu = rho^2*L^2*mu+q*L^2*mu;

id rho^2*L^2*mu = d2^3 - d1;

if ( count(L,1,mu,1) == 0 ) id rho^2 = d2-q;

EndArgument;

FactArg acc;

ChainOut acc;

id acc(x?symbol_) = x;

id acc(x?number_) = x;

#call simsincos

#do d = {d1,d2,rho,L,sint1,cost1,sint2,cost2}

id d‘d’^x? = ‘d’^x;

#enddo

#endprocedure

Note that once an occurrence of acc has only a simple argument, we take it out so that
remaining substitutions inside acc do not spoil it anymore. Then there is some moving



around by means of identities to see whether we hit on single terms (which are taken out
with the factarg/chainout and id-statements). Finally we try the sin/cos system again and
substitute the denominators back.



With these procedures we are now ready to continue our project. First we compute the GI
tensor which is the inverse of the G tensor. Hence the part after the definition of the G table
is

FillExpression G = Fg(tg);

Drop;

.sort

#call minors(Finv,G,tgi,10)

.sort

#call simd1d2

Bracket tgi;

.sort

Here we compute the minors. The result is of course a bit messier than just computing the
determinant. We obtain:



Finv=

+tgi(0,0)*(d2^2*L^10*rho^2*sint1^6*cost1^2*sint2^2*

cost2^2)

+tgi(1,1)*(-d1^-1*d2^4*L^12*rho^2*sint1^6*cost1^2*sint2^2

*cost2^2)

+tgi(1,5)*(-d1^-1*d2^3*L^11*rho^2*scqmu*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(1,6)*(-d1^-1*d2^3*L^11*rho^2*scqmu*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(1,7)*(-d1^-1*d2^3*L^11*rho^2*scqmu*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(2,2)*(d1*d2*L^8*sint1^6*cost1^2*sint2^2*cost2^2)

+tgi(3,3)*(d2^2*L^8*rho^2*sint1^6*cost1^2*sint2^2*cost2^2

)

+tgi(4,4)*(d2^2*L^8*rho^2*sint1^4*cost1^2*sint2^2*cost2^2

)

+tgi(5,1)*(-d1^-1*d2^3*L^11*rho^2*scqmu*sint1^6*cost1^2*

sint2^2*cost2^2)



+tgi(5,5)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2+d2^2*L^8*rho^2*sint1^6*sint2^2*cost2^2

)

+tgi(5,6)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(5,7)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(6,1)*(-d1^-1*d2^3*L^11*rho^2*scqmu*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(6,5)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(6,6)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2+d2^2*L^8*rho^2*sint1^4*cost1^2*sint2^2

)

+tgi(6,7)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(7,1)*(-d1^-1*d2^3*L^11*rho^2*scqmu*sint1^6*cost1^2*

sint2^2*cost2^2)



+tgi(7,5)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(7,6)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2)

+tgi(7,7)*(-d1^-1*d2^2*L^10*mu*rho^2*q*sint1^6*cost1^2*

sint2^2*cost2^2+d2^2*L^8*rho^2*sint1^4*cost1^2*cost2^2

)

+tgi(8,8)*(d2*L^10*rho^2*sint1^6*cost1^2*sint2^2*cost2^2)

+tgi(9,9)*(d2*L^10*rho^2*sint1^6*cost1^2*sint2^2*cost2^2)

+tgi(10,10)*(d2*L^10*rho^2*sint1^6*cost1^2*sint2^2*

cost2^2);

As you can see, this is not very informative for now. It becomes worse for the bigger tensors
we will be treating. Hence we will skip most of those outputs.



The inverse is now trivial:

Local Finv = Finv/(Finv[tgi(0,0)])-tgi(0,0);

Bracket tgi;

.sort

FillExpression GI = Finv(tgi);

Drop;

.sort

Local Fone = tone(i1,i3)*G(i1,i2)*GI(i2,i3);

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

#call simd1d2

Bracket tone;

Print +f;

The invariant is stored in the GI table. Of course the definition of this table and all the
variables we use in the procedures we just defined have to be declared in the file declare.h.

To make sure that we have indeed the inverse and GijGI
jk = δki we verify this relation. The

tensor ‘tone’ is the marker for the position in the tensor: tone(i,k) is seen as the element



δki . We will use this in all tensors that we are going to define. Then we have to sum over the
indexes. The statement

Sum i,1,...,10;

is equivalent to ∑10
i=1 over the current term. This means that our three-fold sum generates

in principle 1000 terms, but as soon as the G and GI are substituted, their zeroes will make
most of those vanish. After simplification the output is indeed:

Fone=

+tone(1,1)*(1)

+tone(2,2)*(1)

+tone(3,3)*(1)

+tone(4,4)*(1)

+tone(5,5)*(1)

+tone(6,6)*(1)

+tone(7,7)*(1)

+tone(8,8)*(1)

+tone(9,9)*(1)

+tone(10,10)*(1);



At the final stages of this project we will have to evaluate 12-fold sums. The important
thing is to do that in such a way that we do not need to evaluate 1012 terms. In the above
program, what happens is that after the first two sums the values of G can be substituted.
Because this is a table, this is done automatically. This gives already many zeroes. As a result
the third sum has to be applied to far fewer than 100 terms. This is what we will have to pay
attention to.



Next are the affine connections. They are defined by

Local FGamma = +1/2*tgamma(i1,i2,i3)*GI(i1,i4)*der(i2,G(i4,i3))

+1/2*tgamma(i1,i2,i3)*GI(i1,i4)*der(i3,G(i2,i4))

-1/2*tgamma(i1,i2,i3)*GI(i1,i4)*der(i4,G(i2,i3));

with ‘der’ the derivative function. This means that we have to be able to take derivatives.
For this we have to add the CFunctions ‘der’ and ‘rem’ to declare.h and we define two sets
‘params’ and ‘vars’:

Set vars:rho,sint1,cost1,sint2,cost2;

Set params:q,L,mu,scqmu,cqmu,u3;

with parameters that do and do not depend on the variables w.r.t. which we take derivatives.
This makes life easier.

At this points we need some information about which parameters depend on which co-
ordinates and how. This will be part of the procedure we need to write. This derivatives
procedure is given by:



#procedure derivative

*

* Procedure takes the derivative for our metric.

*

id der(x?,0) = 0;

id der(x?,xx?params) = 0;

id der(x?{1,5,6,7,8,9,10},?a) = 0;

.sort: derivative-1;

SplitArg,der;

repeat id der(x1?,x2?,x3?,?a) = der(x1,x2)+der(x1,x3,?a);

FactArg,der;

id der(x?,?a,x1?number_,?b) = der(x,?a,?b)*x1;

repeat id der(x?,?a,xx?params,?b) = der(x,?a,?b)*xx;

repeat id der(x?,?a,1/xx?params,?b) = der(x,?a,?b)/xx;

id der(x?) = 0;

*

* chain rule:

*



repeat;

id der(x?,x1?,x2?,?a) = der(x,x1)*rem(x2,?a)+x1*der(x,x2,?a);

endrepeat;

repeat id rem(x?,?a) = x*rem(?a);

id rem = 1;

id der(x1?,i_) = 0;

id der(x1?,1/x2?vars) = -der(x1,x2)/x2^2;

id der(x1?,1/d1) = -der(x1,d1)/d1^2;

id der(x1?,1/d2) = -der(x1,d2)/d2^2;

id der(2,rho) = 1;

id der(2,d1) = 6*rho*(rho^2+q)^2-2*rho*mu*L^2;

id der(2,d2) = 2*rho;

id der(3,sint1)= cost1;

id der(3,cost1)= -sint1;

id der(3,d1)=0;

id der(3,d2)=0;

id der(4,sint2)= cost2;

id der(4,cost2)= -sint2;



id der(4,d1)=0;

id der(4,d2)=0;

id der(x1?{2,3,4},x2?vars) = 0;

#endprocedure

First we note that derivatives w.r.t. anything but the coordinates 2,3,4 are zero. Then we
apply that the derivative of a sum is the sum of the derivatives. Using factarg we split the
arguments into individual symbols. We can take out the symbols that do not depend of the
coordinates for which we take the derivatives. The chain rule needs an extra function rem
which contains the remaining symbols. Then we define the derivatives of negative powers and
we take into account that d1 and d2 depend on ρ, q and/or µ. Finally we substitute the
derivatives. Anything not specified is zero.



The computation of the connections is now

Local FGamma = +1/2*tgamma(i1,i2,i3)*GI(i1,i4)*der(i2,G(i4,i3))

+1/2*tgamma(i1,i2,i3)*GI(i1,i4)*der(i3,G(i2,i4))

-1/2*tgamma(i1,i2,i3)*GI(i1,i4)*der(i4,G(i2,i3));

Sum i1,1,...,10;

Sum i4,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

#call derivative

#call simd1d2

Bracket tgamma;

.sort

Fillexpression Gamma = FGamma(tgamma);

Drop;

This runs rather smoothly and our program gives the statistics

Time = 0.23 sec Generated terms = 93

FGamma Terms in output = 93

Bytes used = 7960



The next step is the Riemann tensor:

*

* Set up the Riemann tensor.

* Note that the first index is upper, the other three lower.

*

Local FRiemann =

+triemann(i1,i2,i3,i4)*der(i3,Gamma(i1,i2,i4))

-triemann(i1,i2,i4,i3)*der(i3,Gamma(i1,i2,i4))

+triemann(i1,i2,i4,i3)*Gamma(i1,i4,i5)*Gamma(i5,i3,i2)

-triemann(i1,i2,i3,i4)*Gamma(i1,i4,i5)*Gamma(i5,i3,i2);

if ( count(der,1) );

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i4,1,...,10;

id der(?a,0) = 0;

Sum i3,1,...,10;

else;

Sum i1,1,...,10;



Sum i5,1,...,10;

Sum i4,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

endif;

#call derivative

#call simd1d2

Bracket triemann;

.sort

FillExpression Riemann = FRiemann(triemann);

Drop;

This is slightly more complicated because some terms have a derivative and some do not. We
cannot do the sum over i5 over the terms that do not have this index. Hence we need the if
construction.

The statistics at this point are

Time = 0.31 sec Generated terms = 742

FRiemann Terms in output = 742

Bytes used = 66944



From the Riemann tensor we can construct the Ricci tensor:

Local FRicci = tricci(i1,i2)*Riemann(i3,i1,i3,i2);

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

#call simd1d2

Bracket tricci;

Print +f;

.sort

FillExpression Ricci = FRicci(tricci);

Drop;

Note that this is a contraction between an upper and a lower index. The remaining tensor
has two lower indexes. The tensor has 22 components with in total 41 terms.



And of course we can now compute the curvature:

Local FR = tr*GI(i1,i2)*Ricci(i1,i2);

Sum i1,1,...,10;

Sum i2,1,...,10;

#call simd1d2

Bracket tr;

Print +f +s;

.sort

Hide FR;

Because we will need the curvature later we do not drop it but we put it in the hide system.
A proper contraction needs an upper and a lower index, and hence we need to multiply by
GI. It turns out that for this metric the curvature is zero. We are still at 0.32 sec.



The next step is to compute the Weyl tensor(s). The definition can be found in Wikipedia
which gives two definitions. We take the second which has only lower indexes.

Local Fweyl0000 =

tweyl(i1,i2,i3,i4)*(G(i1,i5)*Riemann(i5,i2,i3,i4)

-1/8*Conv(Ricci,G,i1,i2,i3,i4)

+R/80*Conv(G,G,i1,i2,i3,i4)

-R/180*Conv(G,G,i1,i2,i3,i4));

id Conv(f1?,f2?,i1?,i2?,i3?,i4?) =

+f1(i1,i3)*f2(i2,i4)+f1(i2,i4)*f2(i1,i3)

-f1(i1,i4)*f2(i2,i3)-f1(i2,i3)*f2(i1,i4);

.sort

if ( count(Riemann,1) );

Sum i5,1,...,10;

endif;

Sum i2,1,...,10;

Sum i3,1,...,10;

Sum i4,1,...,10;

Sum i1,1,...,10;



.sort:weyl-3;

id R = FR[tr];

#call simd1d2

Bracket tweyl;

.sort

FillExpression Weyl0000 = Fweyl0000(tweyl);

Drop;

We need the extra CFunctions Conv, f1 and f2. We will need to make many contractions
involving Weyl tensors. Hence we cannot use the version with only lower indexes all the time.
For convenience we adopt a notation in which we attach to the name a string of zeroes and
ones that indicate whether the indexes are lower(0) or upper(1). This means that we have to
add quite a few tables to the file declare.h. The statistics are now

Time = 0.40 sec Generated terms = 864

Fweyl0000 Terms in output = 864

Bytes used = 80592

and we produce the next tensor with



Local Fweyl0001 = tweyl(i1,i2,i3,i4)*GI(i4,i5)*Weyl0000(i1,i2,i3,i5);

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

Sum i5,1,...,10;

Sum i4,1,...,10;

#call simd1d2

Bracket tweyl;

.sort

FillExpression Weyl0001 = Fweyl0001(tweyl);

Drop;

Note the order in which we take the sums. We want to get to the zeroes in the Weyl tensor
first. By similar techniques we produce also

Weyl1000 Weyl1100 Weyl1010 Weyl1001 Weyl0101

Weyl1110 Weyl1011 Weyl0111 Weyl1111

With the 11 tensors we have constructed this way we have enough for our project. The final
statistics are



Time = 1.07 sec Generated terms = 1540

Fweyl1111 Terms in output = 1540

Bytes used = 122944



Next we have to introduce something called the five-form. The five-form is a totally anti-
symmetric tensor with 5 indexes. For this model it is given up to antisymmetrization by

Local Ffive00000 =

+tfive(1,2,8,9,10)*( 4*rho*(rho^2+q)/L)

+tfive(3,5,8,9,10)*( 2*L^2*cost1*sint1*scqmu)

+tfive(3,6,8,9,10)*(-2*L^2*cost1*sint1*cost2^2*scqmu)

+tfive(3,7,8,9,10)*(-2*L^2*cost1*sint1*sint2^2*scqmu)

+tfive(4,6,8,9,10)*( 2*L^2*sint1^2*sint2*cost2*scqmu)

+tfive(4,7,8,9,10)*(-2*L^2*sint1^2*sint2*cost2*scqmu)

;

We can antisymmetrize by (this use of the Levi-Civita tensor is very handy)

id tfive(i1?,...,i5?) = e_(i1,...,i5)*e_(i6,...,i10)*

tfive(i6,...,i10);

Contract;

Bracket tfive;

.sort

FillExpression Five00000 = Ffive00000(tfive);

Drop;



Also of this tensor we will need varieties with different combinations of upper and lower
indexes. As before

Local Ffive00001 = tfive(i1,i2,i3,i4,i5)*

Five00000(i1,i2,i3,i4,i6)*GI(i5,i6);

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

Sum i4,1,...,10;

Sum i6,1,...,10;

Sum i5,1,...,10;

#call simd1d2

Bracket tfive;

.sort

FillExpression Five00001=Ffive00001(tfive);

Drop;

and we calculate as well

Five00011 Five00111 Five01111 Five11111



and for fun we compute

Local F55 = Five00000(i1,i2,i3,i4,i5)*Five11111(i1,i2,i3,i4,i5);

Sum i2,1,...,10;

Sum i3,1,...,10;

Sum i4,1,...,10;

Sum i5,1,...,10;

Sum i1,1,...,10;

#call simd1d2

Print +f +s;

.sort

Drop;

which gives as output

Time = 1.47 sec Generated terms = 2

F55 Terms in output = 2

Bytes used = 84

F55=



+960*d2^-3*mu*q

-1920*L^-2

;



The next step involves a conjugate

Local FHDfive00000=u3*L^5*tfive(i1,i2,i3,i4,i5)*

((1/120)*rho*(q+rho^2)*cost1*sint1^3*sint2*cost2)

*e_(i1,...,i10)*Five11111(i6,...,i10);

Sum i6,1,...,10;

Sum i7,1,...,10;

Sum i8,1,...,10;

Sum i9,1,...,10;

Sum i10,1,...,10;

.sort

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

Sum i4,1,...,10;

Sum i5,1,...,10;

id e_(1,2,3,4,5,6,7,8,9,10)=i_;

#call simd1d2

Bracket tfive;



.sort

FillExpression HDfive00000=FHDfive00000(tfive);

and the tensor we are really after is

Local FCfive00000=tfive(i1,i2,i3,i4,i5)*

(Five00000(i1,...,i5)+HDfive00000(i1,...,i5));

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

Sum i4,1,...,10;

Sum i5,1,...,10;

#call simd1d2

Bracket tfive;

.sort

FillExpression CFive00000=FCfive00000(tfive);

Drop;

This tensor has a total 1800 terms. We construct now also

FCfive00001 FCfive00011 FCfive00111 FCfive01111 FCfive11111



At this point we can start to construct the tensors we need for the invariants we want to
compute. We call this tensor T, it has 6 indexes and we will need a number of varieties with
upper and lower indexes. When it has only lower indexes it is symmetric in the first 3 indexes
vs. the last 3 indexes, and each of these groups of three indexes is totally antisymmetric
between the three indexes. The definition, up to the symmetries, is

Local FT000000 =

+i_*der(i1,CFive00000(i2,i3,i4,i5,i6))*tt(i1,i2,i3,i4,i5,i6)

-i_*Gamma(i7,i1,i2)*(

CFive00000(i7,i3,i4,i5,i6)*tt(i1,i2,i3,i4,i5,i6)

CFive00000(i3,i7,i4,i5,i6)*tt(i1,i3,i2,i4,i5,i6)

CFive00000(i4,i3,i7,i5,i6)*tt(i1,i4,i3,i2,i5,i6)

CFive00000(i5,i3,i4,i7,i6)*tt(i1,i5,i3,i4,i2,i6)

CFive00000(i6,i3,i4,i5,i7)*tt(i1,i6,i3,i4,i5,i2) )

+1/16*CFive00000(i1,i2,i3,i7,i8)*CFive00011(i4,i5,i6,i7,i8)*

tt(i1,i2,i3,i4,i5,i6)

-3/16*CFive00000(i1,i2,i3,i7,i8)*CFive00011(i4,i5,i6,i7,i8)*

tt(i1,i2,i6,i4,i5,i3)

;



Note that we have derivatives again. We work this out with

.sort

Sum i4,1,...,10;

Sum i5,1,...,10;

Sum i6,1,...,10;

.sort

if ( count(der,1) );

Sum i2,1,...,10;

Sum i3,1,...,10;

id der(x?,0) = 0;

id der(i?,0) = 0;

elseif ( count(Gamma,1) );

Sum i3,1,...,10;

Sum i7,1,...,10;

else;

Sum i7,1,...,10;

Sum i8,1,...,10;

endif;



.sort

if ( count(Gamma,1) );

Sum i1,1,...,10;

Sum i2,1,...,10;

elseif ( count(der,1) );

Sum i1,1,...,10;

else;

Sum i1,1,...,10;

Sum i2,1,...,10;

Sum i3,1,...,10;

endif;

.sort

#call derivative

#call simd1d2

.sort



This gets the tensor, but it is not in its symmetric form. We take care of that with

*

* Now we impose the symmetries.

*

id tt(x1?,x2?,x3?,?a) = (tt(x1,x2,x3,?a)-tt(x2,x1,x3,?a)

+tt(x2,x3,x1,?a)-tt(x3,x2,x1,?a)

+tt(x3,x1,x2,?a)-tt(x1,x3,x2,?a))/6;

.sort

id tt(?a,x1?,x2?,x3?) = (tt(?a,x1,x2,x3)-tt(?a,x2,x1,x3)

+tt(?a,x2,x3,x1)-tt(?a,x3,x2,x1)

+tt(?a,x3,x1,x2)-tt(?a,x1,x3,x2))/6;

.sort

id tt(x1?,x2?,x3?,x4?,x5?,x6?) = (tt(x1,x2,x3,x4,x5,x6)

+tt(x4,x5,x6,x1,x2,x3))/2;

#call simd1d2

b tt;

.sort

FillExpression T000000 = FT000000(tt);



Drop;

This tensor is considerably more complicated. The final statistics are

Time = 11.09 sec Generated terms = 39816

FT000000 Terms in output = 39816

Bytes used = 4474128

and now we need to construct the tensors

FT000001 FT100000 FT100100 FT000011 FT110100

FT110000 FT111000 FT110110 FT111110 FT110111

FT111111 FT011111 FT111011 FT001111

These are all the T-tensors we need. The statistics are now at

Time = 54.37 sec Generated terms = 55572

FT001111 Terms in output = 55572

Bytes used = 6030752



Now we are going to construct invariants. These are invariants that are formed by combi-
nations of Weyl tensors and T-tensors with a total of four tensors. The simplest one is

Local Finv1 = Weyl0000(i1,i2,i3,i4)*

Weyl1100(i1,i2,i5,i6)*

Weyl1100(i3,i5,i7,i8)*

Weyl1111(i4,i7,i6,i8);

#call contract8(Finv1,i1,i2,0,i3,i4,0,i5,i6,0,i7,i8)

Of course this needs an explanation of what the procedure contract8 looks like. It is not very
complicated.



#procedure contract8(Expr,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11)

#do j = 1,11

#if ( ‘i‘j’’ == 0 )

id scqmu^2 = q*mu;

id scqmu^-2 = 1/q/mu;

.sort

#else

sum ‘i‘j’’,1,...,10;

#endif

#enddo

id scqmu^2 = q*mu;

id scqmu^-2 = 1/q/mu;

.sort

#call simd1d2

id d1 = d2^3-rho^2*L^2*mu;

id rho^2 = d2-q;

Print +f +s;

.sort



Hide ‘Expr’;

#endprocedure

This procedure contracts the indexes in the order indicated and sorts when a parameter is
zero. It calls the simplification routine and brings the notation to a unique form. Then it
puts the expression in the hide system.



The result is

Time = 54.60 sec Generated terms = 35

Finv1 Terms in output = 9

Bytes used = 436

Finv1=

+11823/8*d2^-12*mu^4*q^4

-2652*d2^-11*mu^4*q^3

+3168*d2^-10*mu^4*q^2

-7144*d2^-9*L^-2*mu^3*q^3

-1728*d2^-9*mu^4*q

+6408*d2^-8*L^-2*mu^3*q^2

+360*d2^-8*mu^4

-1920*d2^-7*L^-2*mu^3*q

+1664*d2^-6*L^-4*mu^2*q^2

;



When there are more contracted indexes we have corresponding procedures contract9 to
contract12. A few of the other invariants are

Local Finv3 = Weyl1111(i1,i2,i3,i4)*

Weyl0101(i1,i5,i6,i7)*

Weyl0111(i2,i6,i8,i9)*

T000000(i3,i4,i5,i7,i8,i9);

#call contract9(Finv3,i3,i4,i5,0,i7,i8,i9,0,i1,i2,0,i6)

with

Time = 58.97 sec Generated terms = 26

Finv3 Terms in output = 7

Bytes used = 412

Finv3=

+1332*d2^-9*L^-2*mu^3*q^3

-364*d2^-9*L^-2*mu^3*q^3*u3^2

-1216*d2^-8*L^-2*mu^3*q^2

+256*d2^-8*L^-2*mu^3*q^2*u3^2



+320*d2^-7*L^-2*mu^3*q

-192*d2^-6*L^-4*mu^2*q^2

-320*d2^-6*L^-4*mu^2*q^2*u3^2

;



Local Finv8 = Weyl0001(i1,i2,i3,i4)*

Weyl1011(i1,i5,i6,i7)*

T111111(i2,i3,i5,i8,i9,i10)*

T000000(i4,i6,i8,i7,i9,i10);

#call contract10(Finv8,i4,i6,i7,0,i8,i9,i10,0,i1,i5,0,i2,i3)

with

Time = 80.55 sec Generated terms = 105

Finv8 Terms in output = 19

Bytes used = 932

Finv8=

+461/6*d2^-12*mu^4*q^4

+308/3*d2^-12*mu^4*q^4*u3^2

-1/2*d2^-12*mu^4*q^4*u3^4

-280*d2^-11*mu^4*q^3

-408*d2^-11*mu^4*q^3*u3^2

+288*d2^-10*mu^4*q^2

+800/3*d2^-10*mu^4*q^2*u3^2



-26/3*d2^-9*L^-2*mu^3*q^3

+3812/3*d2^-9*L^-2*mu^3*q^3*u3^2

+1370/9*d2^-9*L^-2*mu^3*q^3*u3^4

-256/3*d2^-9*mu^4*q

-224/3*d2^-8*L^-2*mu^3*q^2

-4832/3*d2^-8*L^-2*mu^3*q^2*u3^2

-112*d2^-8*L^-2*mu^3*q^2*u3^4

-704/3*d2^-7*L^-2*mu^3*q

+192*d2^-7*L^-2*mu^3*q*u3^2

+1104*d2^-6*L^-4*mu^2*q^2

+1088*d2^-6*L^-4*mu^2*q^2*u3^2

+656/9*d2^-6*L^-4*mu^2*q^2*u3^4

;



and the worst one

Local Finv20 =T000000(i1,i2,i3,i4,i5,i6)*

T100100(i1,i7,i8,i4,i9,i10)*

T110110(i2,i7,i11,i5,i9,i12)*

T111111(i3,i8,i11,i6,i10,i12);

#call contract12(Finv20,i1,i2,i3,0,i4,i5,i6,0,i7,i8,i9,i10,0,

i11,i12)

with

Time = 852.74 sec Generated terms = 1000

Finv20 Terms in output = 1000

Bytes used = 228896

Time = 853.19 sec Generated terms = 39816

Finv20 Terms in output = 39816

Bytes used = 5215504

Time = 1090.10 sec Generated terms = 24660544



Finv20 Terms in output = 12031168

Bytes used = 1167649472

Time = 1577.10 sec Generated terms = 11990644

Finv20 Terms in output = 1802

Bytes used = 108644

Time = 1577.12 sec Generated terms = 173

Finv20 Terms in output = 26

Bytes used = 1004

Finv20=

+91406336*d2^-12*mu^4*q^4

-28672000/3*d2^-12*mu^4*q^4*u3^2

+272211968/3*d2^-12*mu^4*q^4*u3^4

-688128*d2^-12*mu^4*q^4*u3^6

+114688*d2^-12*mu^4*q^4*u3^8

-547291136/3*d2^-11*mu^4*q^3



+47022080/3*d2^-11*mu^4*q^3*u3^2

-178913280*d2^-11*mu^4*q^3*u3^4

+688128*d2^-11*mu^4*q^3*u3^6

+273416192/3*d2^-10*mu^4*q^2

-18350080/3*d2^-10*mu^4*q^2*u3^2

+266076160/3*d2^-10*mu^4*q^2*u3^4

+592936960/3*d2^-9*L^-2*mu^3*q^3

+168132608/3*d2^-9*L^-2*mu^3*q^3*u3^2

+529399808/3*d2^-9*L^-2*mu^3*q^3*u3^4

+58032128/3*d2^-9*L^-2*mu^3*q^3*u3^6

-1605632/3*d2^-9*L^-2*mu^3*q^3*u3^8

-595460096/3*d2^-8*L^-2*mu^3*q^2

-60555264*d2^-8*L^-2*mu^3*q^2*u3^2

-177078272*d2^-8*L^-2*mu^3*q^2*u3^4

-64225280/3*d2^-8*L^-2*mu^3*q^2*u3^6

+413335552/3*d2^-6*L^-4*mu^2*q^2

+66060288*d2^-6*L^-4*mu^2*q^2*u3^2

+133955584*d2^-6*L^-4*mu^2*q^2*u3^4



+80740352/3*d2^-6*L^-4*mu^2*q^2*u3^6

+14221312/3*d2^-6*L^-4*mu^2*q^2*u3^8

;



This last one took about 725 sec. The rest of the project was to add the 20 invariants with
coefficients obtained by different means.

At the moment this program was constructed not all invariants were the ‘correct ones’ and
not all coefficients were right. For the program that makes no difference. By the time all this
was sorted out the program needed only minor modifications. The paper that contains the
results of these calculations is

Nabamita Banerjeea, Suvankar Dutta, Ivano Lodato. JHEP 1305 (2013) 027,
e-Print: arXiv:1301.6773 [hep-th].

The exact invariants needed and their coefficients can be looked up in that paper.


