Chess-2 tests at SCIPP (attempting charge injection)

Derek Hamersle, Herve Grabas, Vitaliy Fadeyev

IV tests

Characterized IV for the board in hand, R1_1.

- Seems there is a breakdown at ~75 V.
 However, the current level rose in subsequent scans.
- Decided to run at up to 40 V for now.
- Note that, due to R18 = 10 kOhm in series, the voltage on the sensor is lower than what's supplied by ~10 V.

Charge injection

Trying to use charge injection.

- Using software from Herve and Derek (UCSC branch, a modification of the SLAC original one).
- The sequence in the code is:
 - 1. Issuing calibration pulse
 - 2. Issuing softTrigger
 - 3. Reading data out
- How this maps into the signals from FPGA to the chip is a bit unclear. For instance, would expect to read data without calibration pulse, i.e. "just noise". But see no data in this case.
- As per Dionisio's note and schematics, we have loopback connection on the board. This means:
 - o The external pulser is not involved.
 - o The voltage level of the pulse should be 2.5 V.

Threshold-Time dependence

Occupancy of Threshold-time is peculiar:

- Yubo noted that time would be spread for thresholds close to the BL level (i.e. random noise).
- o This makes sense qualitatively. Changing BL moves the distribution along the threshold axis.
- o Decided to keep BL = 704 for further tests.
- Scans uncussessful when BL is higher than 744. The system seems to hang.
- Note that the threshold scans starts from 744. The CHESS2 Specifications recommends threshold ~10 mV above BL.
- The low-T clustering may indicate it's signal?? There seems to be 1 us-long data binning happening.

Higher statistics

High-statistics S-curve scan can help to check the chip performance.

- Took data with 2000 triggers per threshold, at 10 V and 40 V (values at PS).
- There are signs of an S-curve, with maybe some difference for the different biases.
 But really need to fit the curve and compare.

pleft=(62, 19),shape=(1, 1),dac.dacBLRaw=0x2c0,chargeInjEnabled=1,doCalPulse=1,trial=

pleft=(62, 19),shape=(1, 1),dac.dacBLRaw=0x2c0,chargeInjEnabled=1,doCalPulse:pleft=(62, 19),shape=(1, 1),dac.dacBLRaw=0x2c0,chargeInjEnabled=1,doCalPulse=1,trial=

Plan

The short-term work plan:

- To quantify the S-curves.
- To check results for different calibration pulse parameters:
 - o inhibit, polarity, timing.
- It's tempting to remove routing resistors on the carrier board, then inject the charge with a pulser at varying amplitudes.

Other suggestions are more than welcome!

Configuration Used

Baseline: 567mV

Scanned threshold range:599 to 999 mV

Chess2Ctrl1.VPTrimatt=12

Chess2Ctrl1.VPLoadatt=30

Chess2Ctrl1.VNatt=30

Chess2Ctrl1.VNSFatt=29

Chess2Ctrl1.VNLogicatt=28

Chess2Ctrl1.VPFBatt=10