

Jet Residual Correction with 2017 Dijet Data at CMS

FSP CMS workshop 2018

Christoph Garbers, Anastasia Karavdina, Jens Multhaup, Peter Schleper

University of Hamburg

September 20, 2018

September 20, 2018

Input and Selection

Data

RunII 2017 41 fb⁻¹

Simulation QCD MC pythia8 Selection:

- Lepton veto
- At least two particle flow jets with charged hadron substruction, clustered with anti-kt with R=0.4 (AK4CHS)

•
$$|\eta_{tag}| < 1.3$$

 Filter pre-fired events (details later)

Response Definition

p_T -balance response

$$\blacktriangleright A = \frac{p_T^{\text{probe}} - p_T^{\text{tag}}}{p_T^{\text{probe}} + p_T^{\text{tag}}}$$

- ► < A > is calculated in bins of |η_{probe}| and p^{ave}_T
- ► Relative response $\begin{array}{l}
 R_{rel}^{p_T}(|\eta_{probe}|, p_T^{ave}) = \\
 \frac{1 + \langle A \rangle}{1 - \langle A \rangle}
 \end{array}$

MET projection fraction (MPF) response

$$\bullet \ B = \frac{\vec{\mathcal{E}_T} \cdot p_T^{\vec{tag}} / p_T^{tag}}{p_T^{probe} + p_T^{tag}}$$

- ► < B > is calculated in bins of |η_{probe}| and p^{ave}_T
- Relative response $R_{rel}^{p_T}(|\eta_{probe}|, p_T^{ave}) = \frac{1+\langle B \rangle}{1-\langle B \rangle}$

$$p_T^{ave} = rac{p_T^{jet1} + p_T^{jet2}}{2}$$

September 20, 2018

Asymmetry and MPF

UH Bundesministerium für Bildung und Forschung

Following slides use an example part of the data

p_T -balance response

MPF response

September 20, 2018

Relative Response at α < 0.3

 $\alpha = p_T^{jet3} / p_T^{ave}$

September 20, 2018

Ratio of Responses at $\alpha < 0.3$

$\alpha \rightarrow \mathbf{0}$ extrapolation

 p_{T} -balance response

Fit $(R^{MC}/R^{data})/(R^{MC}/R^{data})|_{\alpha < 0.3}$ (cut on α)

Bundesministerium für Bildung und Forschung

MPF response

September 20, 2018

 $(R^{MC}/R^{data})/(R^{MC}/R^{data})|_{\alpha < 0.3}$

0.0

1.06

1.04

1.02

0.96

0.92

(R^{MC} / R^{data})/(R^{MC} / R^{data})|_a.

1.06

1 04

Residual Correction for Additional Radiation

September 20, 2018

Basics of ECAL Pre-Firing

as reported at PPD General Meeting 05/24/18 by Andrew Brinkerhoff

- Mis-timing of L1 objects due to ECAL transparency loss
- ► If a mis-timed (early) L1 object is above the E_T threshold for an unprescaled L1 path, the previous event will be sent to HLT, and the event actually containing the offline object will be discarded
- Potentially leads to trigger inefficiency and energy bias
- The impact of this is highly Analysis dependent

Filter Pre-Fired Events

L1Jet Seed Based Cleaning:

- ΔR (jet_i, L1Jet_{bx=-1}) < 0.4 for $i \in [1, 2, 3]$
- L1Jet_{bx=-1} $p_t > 20\%$ of matched jet p_t

Relative Residual Corrections

$$\mathcal{C}(|\eta_{probe}|) = \left\langle R^{MC}/R^{data} \right\rangle_{lpha < 0.3} \cdot k_{FSR}$$

Final Pt and MPF response corr. are expected to be compatible

Relative Response Time Dependence

Bundesministerium für Bildung und Forschung

typical time dependece for lower η is more even with much smaller uncertainties

Relative Residual Corrections

September 20, 2018

- Preliminary residual corrections for 2017 CMS data are available
- ▶ Pre-firing effect on relative residual correction up to 5%
- Investigation of method discrepancy, time dependence and fit stability