High – x Transfer Matrix Study (update)

Ritu Aggarwal, Allen Caldwell

Overview

An estimate of K_ii (i.e. radiative corrections)

Ratio of N (with and without Transfer Matrix from HERAPDF2.0)

Transfer Matrix...

Transfer Matrix for the detector is developed using which number of events reconstructed in data can be predicted from any PDF as below.

→ Get a prediction for the generator/hadron level number of events, which is luminosity x radiative corrections x Born cross section.

i.e.
$$u_{i,k} = \mathcal{L} K_{ii} \sigma_{i,k}$$

→ Apply transfer matrix a_{ij} to get a prediction for the number of events in a bin j.

$$u_{j,k} \approx \sum_{i} a_{ij} \nu_{i,k}$$

L: data luminosity

 K_{ii} : Radiative corrections (calculated using HERACLES)

 σ_{ik} : born level cross sections in ith bin for kth PDF

 \mathbf{a}_{ij} has all detector and analysis effects

(probability of an event reconstructed in jth bin to come from ith true bin)

Ratio of M (high-x, with Radiative Corrections) and L*σ (Mandy : without radiative corrections)

First Q2 bin: Edge of the MC used, others are behaving as expected.

5/9/18 4

Ratio of M (Mandy, without Radiative Corrections) and M (Ritu: with radiative corrections)

First Q2 bin: Edge of the MC used, others are behaving as expected.

Ratio of N (w/o using Tmn) and N (using calculated using Tmn) •for HERAPDF2.0: An estimate of choice of PDF to build Tmn

$$\textbf{R(N(herapdf)/N(herapdf from Tmn))} \qquad \nu_{j,k} = \sum_{m}^{M} \frac{d^2\sigma(x,Q^2|M_k)/dxdQ^2}{d^2\sigma(x,Q^2|M_0)/dxdQ^2} \omega_m^{MC} \omega_m^{sim} I(m \in j)$$

Numerator is Eq. 9 from the preliminary text (i.e. count the events in cross section bins for HERAPDF2.0)

More statistics in this region might help, update soon!! 5/9/18

(but is with in statistical error on MC)

Summary

- --An estimate of Kii is shown.
- -- Effect of systematics on choice of PDF on Transfer Matrix studied.

Expected Soon

- -- New MC files to be included for high-x statistics
- -- A very first draft of paper

Back up

Transfer Matrix: Probability of an event reconstructed in jth bin to come from ith true bin

Tracing back the path of MC reconstructed events in the generated $x-Q^2$ phase space

$$a_{ij} = \frac{\sum_{m=1}^{M_i} \omega_m I(m \in j)}{\sum_{m=1}^{M_i} \omega_m^{MC}}$$

 $\mathbf{a}_{_{ij}}$ = probability of an event reconstructed in j^{th} bin to come from i^{th} bin

 ω_m = MC weights given to m^{th} event in bin i

I = 1 if mth event is reconstructed in bin j, else = 0

 M_i = total events generated in ith bin

Reconstructed MC events in xsection binning 'N' (total 153 bins)

Generated distribution of these events in extended binning 'M' (total 429 bins)

5/9/18

Note: MC samples used as in high-x paper.

Using Transfer matrix to predict no. of events reconstructed in a given cross section bin

Generated x-Q2 events in Extended binning

(429 elements in M Vector= number of generatedbins)

bins)

Comparison of Different PDFs

Two type of comparisons

- 1) <u>Comparison of M</u> from different PDFs: comparison of the bin integrated born level Cross sections in x-Q² bins using different PDFs (next two slides)
- 2) <u>Comparison of N</u> from different PDFs: Convolute M with Transfer Matrix and to get a prediction of number of events in the cross section bins ν from different PDFs (rest of the talk)
- ν from different PDF can be compared to n from data and Poisson statistics is used to probe how well given PDF is defining the data.
- p-value is determined for different PDFs
- Comparison of p-values in high-x and lower-x range is shown for different PDFs

Ratio of generated level cross sections in different PDFs (at NLO) to HERAPDF2.0NLO for M bins (e+p)

Where $\overline{\sigma}$ is the total integrated cross section in a given x-Q² bin There is a shape difference between HERAPDF & other PDFs, approaches 10% at x ~ 0.4.

Ratio of generated level cross sections in different PDFs (at NLO) to HERAPDF2.0NLO for M bins (e-p)

There is a shape difference between HERAPDF & other PDFs, approaches 10% at $x \sim 0.4$.

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics

Ratio of No. of events in data to HERAPDF2.0 NLO and 1,2,3 sigma bands from Poisson Statistics

Probability for explaining high-x data from different PDFs

PDF	e ⁻ p	e^+p
HERAPDF2.0	0.05	0.5
CT14	0.002	0.8
MMHT2014	0.002	0.8
NNPDF2.3	0.00007	0.6
NNPDF3.0	0.0002	0.7
ABMP16	0.01	0.8
ABM11	0.001	0.6

p-value for e-p and e+p data sets are shown on comparison to different PDFs

(includes only statistical fluctuation from Poisson probabilities).

Conclusions:

***p-values from MMHT2014, CT14nlo, NNPDF2.3, ABM higher than HERAPDF2.0 for e**

Much worse for e p

Probability for explaining high-x data from different PDFs in different x-ranges

	$\mathrm{e^{-}p}$		e^+p	
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$
HERAPDF2.0	0.06	0.2	0.6	0.1
CT14	0.0008	0.2	0.7	0.6
MMHT2014	0.00003	0.1	0.6	0.6
NNPDF2.3	0.00007	0.2	0.6	0.6
NNPDF3.0	0.00003	0.2	0.6	0.6
ABMP16	0.01	0.2	0.8	0.5
ABM11	0.03	0.3	0.7	0.4

p-value for e-p and e+p data sets are shown on comparison to different PDFs for two different x ranges.

Conclusions:

Disagreement comes primarily from lower x in e-p

Statistical and systematic uncertainties

Type of Systematic Uncertainties:

- 1) Affecting the predictions at generator level (M values)
- 2) Affecting the Transfer Matrix T

Type I:

1) Luminosity uncertainty scaling M values

Type II:

- 1) MC statistical fluctuations (uncorrelated uncertainty)
- 2) All correlated and uncorrelated systematic uncertainties as in high-x paper
- 3) Choice of PDF for building T

Nomalization Error: Vary generated events by 1.8 % up and down and calculate new p-value

+1.8~%					
	e^-p		e^+p		
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$	
HERAPDF2.0	0.02	0.1	0.2	0.3	
CT14	0.02	0.3	0.8	0.5	
MMHT2014	0.008	0.2	0.8	0.5	
NNPDF2.3	0.009	0.3	0.8	0.4	
NNPDF3.0	0.008	0.3	0.8	0.4	
ABMP16	0.04	0.3	0.6	0.4	
ABM11	0.03	0.3	0.4	0.2	
-1.8~%					
	e^-p		e^+p		
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$	
HERAPDF2.0	0.03	0.3	0.8	0.2	
CT14	0.0	0.08	0.4	0.6	
MMHT2014	0.0	0.04	0.2	0.6	
NNPDF2.3	0.0	0.08	0.2	0.6	
NNPDF3.0	0.0	0.08	0.2	0.6	
ABMP16	0.0003	0.1	0.7	0.6	
ABM11	0.004	0.2	0.7	0.5	

	e ⁻ p		e^+p	
PDF	x < 0.6	$x \ge 0.6$	x < 0.6	$x \ge 0.6$
HERAPDF2.0	0.06	0.2	0.6	0.1
CT14	0.0008	0.2	0.7	0.6
MMHT2014	0.00003	0.1	0.6	0.6
NNPDF2.3	0.00007	0.2	0.6	0.6
NNPDF3.0	0.00003	0.2	0.6	0.6
ABMP16	0.01	0.2	0.8	0.5
ABM11	0.03	0.3	0.7	0.4

(Scale M by 1.8% down)

Dominant systematics : due to error in normalization of data quoted as 1.8 %

Conclusions:

>p-values from different PDFs change differently

Similar behavior as when using only statistical fluctuations.

P-value determination

Total probability for each PDF : $P(D|M_k) = \prod_j \frac{e^{-\nu_{j,k}} \nu_{j,k}^{n_j}}{n_j!}$

P-value is calculated by integrating out the probability from the left edge till red for the given PDF

Ratio of generated level cross sections in different PDFs (at NNLO) to HERAPDF2.0NLO for M bins (e+p)

Where $\overline{\sigma}$ is the total integrated cross section in a given x-Q² bin There is a shape difference between HERAPDF & other PDFs, approaches 7% at x ~ 0.4.

Ratio of generated level cross sections in different PDFs (at NNLO) to HERAPDF2.0NNLO for M bins (e-p)

There is a shape difference between HERAPDF & other PDFs, approaches 7% at $x \sim 0.4$.