Working Progresss

Alexandra Tews

University of Hamburg

December 13, 2018

◆□ > ◆□ > ◆目 > ◆目 > ○ ■ ○ ○ ○ ○

1/19

Search for electroweak production of supersymmetirc states in scenarios with compressed mass spectra

- Naturalness: $\mu \ll |M_1|, |M_2|,$
- ightarrow three lightest electroweakino separated $\mathcal{O}(100 \text{ MeV} 10 \text{ GeV})$
- \rightarrow Compressed mass spectra Small $\Delta m(\chi_2^0, \chi_1^0), \Delta m(\chi_1^{\pm}, \chi_1^0)$
- ightarrow Final states with displaced low- p_t lepton pairs (e,μ) and p_t^{miss}
 - χ_1^0 momenta recoil against IRS jet, \rightarrow separation between leading jet and p_t^{miss}

<u>Scan:</u>

- For $\mu = [100, 115, 130]$, M1 = M2 = [574, 43 770] GeV:
- $m_{\chi^0_2} > m_{\chi^\pm_1} > m_{\chi^0_1}$
- Mass splittings of $\mathcal{O}(1 \text{ GeV}) \leftrightarrow c\tau(\chi_2^0) = \mathcal{O}(1 \text{ mm})$

Work by Sam

M1 = M2	$\Delta m(\chi_2^0,\chi_1^0)$	c au [mm]
3.7	1.5 GeV	0.02
3.9	1 GeV	0.1
4	0.7 GeV	0.3
4.2	0.45 GeV	1

- At lower M1=M2: higher mass differences but shorter lifetime
- \rightarrow Higher lepton momentum
- \rightarrow Less displacement

Reconstruction efficiencies

- Can we use dE/dx?
- dE/dx information not in FastSim samples from scan
- Checked in: https://github.com/LongLivedSusy/ShortTrackSusy/blob/ master/SigPoints/benchmarks/Summary_benchmarks.pdf
- Only two scenarios with suitable Higgsino masses
- Approx. 10 000 events each
- Not enough statistics, especially not leptonic decay
- largest BR to photons
- hadronic decays

MCMC1	$\Delta m(\chi_2^0,\chi_1^0)$	$\chi_{2}^{0} + X$	$\chi_2^0 \rightarrow II$	$\chi^0_2 ightarrow ee$	$\chi_2^0 \rightarrow \mu\mu$
37 569964	464 MeV	49.7 %	0.8 (0.8)%	04(04)%	04(04)%
22 237840	522 MeV	33 %	1.1 (2.6) %	0.6 (1.3) %	0.6 (1.3) %
12 865833	19 GeV	0,7 %	0 %	0 (0.002) %	0 (0.002)

- Used PYTHIA 8 and FullSim
- SUSY qqbar2chi+-chi0 (16 processes)
- SUSY: qqbar2chi0chi0 (10 processes)
- BR $(\chi_2^0 \rightarrow \gamma \gamma) = 22\%$
- BR $(\chi_2^0 \to II) = 3.5\%$
- $M_1 = M_2 = 6.57 * 10^3 \text{ GeV}$
- $\mu = 100~{\rm GeV}$
- $m_\chi \sim 100~{
 m GeV}$
- $\Delta m(\chi_1^0, \chi_2^0) = 1.13 \text{ GeV}$
- $\Delta m(\chi_1^0,\chi_1^{\pm}) = 0.62 \text{ GeV}$
- 100 000 events

Observed in the samples:

$\Delta m(\chi_2^0,\chi_1^0)$	$\chi_2^0 + \chi_1^0 + X$	$\chi_2^{0} \to \chi_1^{0} + II$	$\chi^0_2 ightarrow ee$	$\chi_2^0 \rightarrow \mu \mu$
1 13 GeV	60 %	2.2 %	1.1 %	1.1 %

- $< p_T(\chi^0_2) >=$ 85.38 GeV
- $< p_T(\chi^0_1) >=$ 84.52 GeV

dE/dx is calculated

a) from charge collected per hit (for pixel and strip hits)

b) with the harmonic-2 estimator on track level (using only strip cluster charge)

•
$$I_h = K \frac{m^2}{p^2} + C$$
 for
0.4 < β < 0.9

- newly introduced CollctedClusterCharge cut in tracking (look up threshold)
- Problem: about 30% tracks with no dE/dx info (low pt tracks)

Boost

hPFMET

• matched if $\Delta R < 0.02$

• matched if $\Delta R < 0.02$

- Reproduce Sample with BR = 1
- Efficiencies in slices of p_t and η
- Use of $dE/dx \rightarrow Plot M$
- Which tracking algorithm is most efficient? (MTV?)

Dropping Muon Seeded Iterations

- Iterative tracking:
 Combinatorial Track Finder
- Proceeds 4 steps in 9 (7) iterations (Phase-0)

- Default includes all 12 (!)
- Dropped
- MuonSeededSeeds-, TrackCandidates-, TracksInOut
- MuonSeededSeeds-, TrackCandidates-, TracksOutIn
- TrackCandidates-, TracksOutInDisplaced
- PreDuplicateMerging with muon seeded tracks

9 main iterations

step name	seeding	target track
Initial	pixel quadruplets	prompt, high $p_{\rm T}$
LowPtQuad	pixel quadruplets	prompt, low <i>p</i> _T
HighPtTriplet	pixel triplets	prompt, high p_T recovery
LowPtTriplet	pixel triplets	prompt, low p_T recovery
DetachedQuad	pixel quadruplets	displaced——
DetachedTriplet	pixel triplets	displaced—— recovery
MixedTriplet	pixel+strip triplets	displaced—
PixelLess	inner strip triplets	displaced+
TobTec	outer strip triplets	displaced++
JetCore	pixel pairs in jets	high p _T jet
Muon inside-out	muon-tagged tracks	muon
Muon outside-in	standalone muon	muon

୬୯୯ 16/19

Challenges:

- Tracking mainly combinatorial problem
 - \rightarrow pile up (PU) has strong effect on reconstruction efficiency, accuracy and timing
- Average PU expected to rise with RunII due to 25ns bunch crossing
- $\bullet\,$ Average PU rises from ≈ 25 to ≈ 45
- Higher occupancy in tracker (+5% in Pixel, +45% in Strip)
- Special Problem: ghost hits in double sided strips
- Effect on iterations that are seeded using double-sided hits (PixelLess/TobTec)
- Pixel dynamic inefficiency caused by saturation of the readout chip buffer

Solutions:

- Timing-Oriented developments
- Reduce time needed for strip-seeded iterations
- Extend strip-pair pattern to include additional third hit (nr. of produced seeds reduced, nr. of tracks remains)
- Out of time pileup increases reconstruction time and fake rate
- Particles from different bunch crossing arrive at random time, corresponding clusters characterized by low charge
 - \rightarrow Selection on the cluster charge (CCC)
- Further improvements e.g. order of the iterations (faster iterations run first) [?]

Iterative Tracking After 2017

- Physics-Oriented developments MounSeedStep OutIn:
- Outside-in iteration seeding using information from outermost muon detectors
- Recovers PU-dependant efficiency loss
- Re-reconstruction of muon-candidate tracks with looser requirements to recover hit collection efficiency

MounSeedStep InOut:

- Requiring muon candidates (muon detectors) to be confirmed through a corresponding track (tracker)
- Reduces false reconstruction rate, improves momentum resolution DuplicateMerge:
- Tags clusters as merged if they are associated with more than one track
- Setting 'isMerged' flag in SiStripCluster-container

- Redo the efficiency study without muonSeeded Iterations
- Include even more 2016/2017 Runs
- Include algo information
- redo with electrons
- redo in MC