

- Clear-On/Clear-Off short (twice)
- Low DCD-AVDD current (once, module passed the mass testing)

Belle II Module and Ladder Failure Analysis and Repair

after Flip-chip and SMD mounting (using Probe Card)

Failure analysis was done at three levels

- after Kapton assembly (using Lab Patch Panels)
- after Ladder assembly

Faults during probe card testing:

- **High SW-DVDD current** (4 times phase 3 + 3 times phase 2/pre-production)
- DHP-Core/IO short (once phase 3 + once phase 2)
- Failed boundary scan (once)

Needle

Module

Module-Jig

- Caused by faulty switcher
- Switchers could be identified using a thermal camera
- 4 (+2) Switchers successfully replaced

Results

Module	Fault	Action	Result
W31_OB1	SW	SW replaced	ClearOn/Off Used for proto type ladder L2_010
W31_OB2	SW	SW replaced	OK @ KEK
W38_IB	SW rotated	SW replaced	OK Was part of L1_013
W43_OF1	SW4	SW4 replaced	OK, grade A Running in GOE
W44_OF1	SW	Matrix cracked. Mo	odule broken.
W44_OF2	SW6	SW6 replaced	ClearOn/Off in SW3 (Elog ID 7586)
W09_0B1	SW2	SW2 replaced	OK, grade A

Step 01 - DHP and DCD digital supply

			min.	current	max.	actual values	
1	🖌 🗖	dhp io	0 mA	550 mA	550 mA	1799 mV	140 mA
2	🖌 🗖	dhp core	0 mA	730 mA	800 mA	1204 mV	377 mA
3	Image: A start and a start	sw dvdd	0 mA	30 mA	30 mA	1041 mV	30 mA

 Module passed the probe card test after DHPT3 was replaced

Module	Fault	Action	Result
W38_OB1	ASIC not identified	None yet.	None yet.
W45_OF2	DHPT3	ASIC replaced with high temp.	OK.

Testing ongoing in Bonn, sanity check okay (pedestal)

Belle II PXD Meeting - DESY 08.10.2018

W13_IF – Fault in Kapton

Failure Description

- Module passed the probe card test including taking pedestals https://elog.belle2.org/elog/PXD-Mass-Testing/7531
- ASIC digital domains show an increased current consumption at the module test after the Kapton assembly
 - Already after JTAG configuration the current consumption of DHP_core and DCD_DVDD are increased compared to reference modules (by ~ 100mA)
 - When the DCDs analog parts are enabled (via JTAG) the currents of DHP_core and DCD_DVDD are increased dramatically
- DHP control lines (GCK, TRG) are okay (probed on the termination resistors on the module)
- ASIC supply voltages show strong dependence Amplow voltage

Root Cause

- Short on the Kapton between DGND_Sense and Amplow_Sense (60hms measured at the pins of the SAMTEC connector after those two wirebonds were removed)
- Output voltages of all the regulators (for the digital nets) were enlarged due to the wrong sensing
- When the DCDs analog part is off, the voltage regulator (current sink) of Amplow is not working in a proper way (the regulator needs some sink current). Therefore the Amplow voltage is not at the set values (but less)
- Passed the testing procedure (grade B) after Kapton was exchanged, part of L1_036

Pedestals during probe card testing

• W43_IF – Broken VBP Trace

- DCD1 and module damaged after Probe Card testing
- DCD successfully exchanged by IZM
- Operation of the ASICs possible
- Module shows only very few hits in the Sr90 radioactive source measurement
- V_BP was measured correctly on the wirebond pad on the PXD9 module, but there is no current flowing (no current when the matrix is illuminated too)
- The V_BP trace is running below the scratch between DCD1 and DHP1
- Probably the V_BP trace was damaged (cut), neighboring traces Source_Sence,
 V_Guard, CGG1-3 may be affected too

- JTAG configuration fails when Switchers are included into the JTAG chain
 - DCD1 still get's the JTAG commands (e.g. enable analog part or test pattern)
- SW5 showed suspicious bumps in the upper bump row
- Re-solder (exchange) of this Switcher5 was done at HLL (with the Kapton attached)
- Afterwards JTAG configuration works fines with all ASICs
- Sanity check (pedestals) ok, now at MPP for full test

L1_021 (W46_IF)

- Ladder was operated without proper thermal contact to the cooling block
- Kapton on the IF side shifted and bent the wirebonds upwards
 - W46_IF electrically okay, but could not be mounted on SCB
- Wirebonds were covered with glob top and bent down at HLL
- After this JTAG initialization failed, nevertheless the first analog voltages (bulk, ClearOn, ClearOff) were applied at MPP
- Since the JTAG initialization failed the ladder was sent back to HLL
 - Optical inspection indicated that TDO and ClearOff wirebonds could touch each other
 - To exclude broken wirebonds all bonds were removed (including the ones below the glob top) and re-bonded
 - All JTAG signals and DHPT control signals were measured on the EOS
 - TDO of DHPT4 does not show any sign of life (no bits toggling, both TDO_N and TDO_P show GND level only)

- Shorts after exchange of DHPT4
 - Two DHPT input lines to DHP-IO (stuck bits)
 - TDO_P to SW_StrC_N (two DHPT outputs)
- Basic operation possible (JTAG configuration, pedestals taking), but Source measurement failed due to corrupted data
- Stable operation not possible 2nd exchange of DHPT4?

W09_IB with Kapton L1bwd_V30_401_104

- Short between GateOn3 and SW_DVDD_Sense lines on the kapton L1bwd_V30_401_104
- Unknown stress to SW1-2 due to overvoltage
- Kapton exchanged with L1bwd_V30_401_102
- W09_IB passed the testing procedure and is part of L1_030

- Short on matrix region after ladder gluing on OF and OB regions
- First time that the damage due to particles in the ladder gluing procedure was noticed
- Trying to repair the short; it remains a short between Source and V_BP (which is likely due to the mechanical damage of the thin silicon

L1_016 – W47_IB

- High value drain lines observed after ladder gluing
- Gluing was done in Oct. 2017 but testing only in March 2018
- Damage of the matrix region visible at the peculiar drain lines
- "long-term" pedestal scan to see if number of effected drain lines increases... seems to be stable

• **L1_035:** W04_IB and W04_IF

- After ladder gluing the module W04_IB shows an increased, abnormal ClearOn and ClearOff current consumption
- There is no localized ohmic short, but all Switcher channels contribute to the increased current consumption (verified using a dedicated sequences which excludes Switchers)
- Assumption: all Switcher try to switch on all the channels (Clear and Gate) all the time, caused by a broken SW_SerIn line
- Boundary Scan Test fails for all the Switcher control signals (SW_SerIn, SW_CLK, SW_StrG, SW_StrC)
- probing the SW_SerIn signal on the PXD9 module is not possible (generated by DHPT1, no test points)

• **L1_035:** W04_IB and W04_IF

bulk	0 mA	10022 mV	10014 mV
clear-on	29 mA	19010 mV	19100 mV
clear-off	-22 mA	3000 mV	2867 mV
gate-on1	-7 mA	-2800 mV	-2869 mV
gate-on2	-7 mA	-2800 mV	-2872 mV
gate-on3	-7 mA	-2802 mV	-2867 mV
gate-off	29 mA	5001 mV	5112 mV
source	102 mA	5991 mV	7296 mV

- Replaced SW1 some bumps not connected
- Configuration okay
- Pedestal change in region of of SW1&2 after re-soldering

- Probe card testing helped to rescue seven modules
- Most root causes could be identified (including ASICs, Kapton, mechanical damage)
 - next module W04_OF1 (from Göttingen)
- Open topic: Bulk current
 - 3 out of 4 modules show a high bulk currents (connected to ClearOn ; current in the range of 200µA, W04_IB, W04_IB, W44_IF)

L1_035: W04_IB and W04_IF

L1_035: W04_IB and W04_IF

Ladder Statistics

- L1-13 broken during testing (PS malfunction)
- L1-14 poor sensor quality
- L1-15
- L1-16 broken during mounting on cooling block (SCB)
- L1-17
- L1-18
- L1-19 particle problem but still ok
- L1-20
- L1-21 overheated during test \rightarrow bond height DHP replacement under study
- L1-28
- L1-30 accident with screwdriver/particle
- L1-35 short on IB (still under investigation)
- L2-22 cracked due to misalignment
- L2-24 dead, particle problem
- L2-29
- L2-34

BPAC 25.06.18: PXD Status

14

Summary Phase 3 – Module Failure Analysis and Repair

Phas	e 3 IF/OF		Phas	e 3 IB/OI	3	Ladder	er Status	
ID	Probe Card	w/ Kapton	ID	Probe Card	w/ Kapton			
W05_IF							Drain-Source Short Matrix	
W08_IF							SW4: ghost hits	
W43_IF							at HLL, not sensitive since VBP is not connected to p+ punch through contact	
W13_IF							kapton short between DCD_AMPLOW_SENSE ad DGND_SENSE	
W46_IF			W32_IB			L1_021	W46_IF: suffered hot operation \rightarrow kapton moved and wirebonds lifted up > TDO of DHPT4 damaged (rework is tested with dummy ladder)	
W09_IF			W09_IB (reworked)			L1_030	broken due to particls while ladder glueing and in addition handling acident (screwdriver)	
W44_OF1	SW- DVDD						SW-DVDD high current, matrix damaged during manual handling	
W44_OF2	SW- DVDD						SW-DVDD high current fixed by replaceing SW6, module broke during 2nd re-work (ClearOn/Off short)	
W45_OF2 (reworked)			W03_OB1				W45_OF2: DHPT3 replaced, W03_OB1: garde B	
W43_OF1 (reworked)			W05_OB1				W43_OF1: SW4 replaced; W05_OB1: noisy DCD3	
W09_OF2			W09_OB1 (reworked)				W09_OF2: broken JTAG module; W09_OB1 SW2 replaced	
W04_OF1			W04_OB1				W04_OB1: short between DCD_AVDD and GND (will be sent form GOE to HLL for analysis)	
W11_OF2			W06_OB1			L2_022	Visual inspection after ladder gluing showed cracks in W06_OB1	
W12_OF1			W44_OB1			L2_024	shorts after glueing, after etching "repair" high source current	

21

Phase 3 L1 Module Overview

Belle II PXD Meeting - DESY 08.10.2018

Phase 3 L2 Module Overview

Ph	Phase 3 OF Phase 3 OB		Ladder	Status			
ID	Probe Card	w/ Kapton	ID	Probe Card	w/ Kapton		
W44_OF1	SW-DVDD						SW-DVDD high current, matrix damaged during manual handling
W44_OF2	SW-DVDD					SW-DV	/DD high current fixed by replaceing SW6, module broke during 2nd re-work (ClearOn/Of
W45_OF2 (reworked)			W03_OB1				W03_OB1: garde B
W43_OF1 (reworked)			W05_OB1				W05_OB1: noisy DCD3
W08_OF2			W08_OB1				
W09_OF1 (reworked)			W08_OB2				
W09_OF2			W09_OB1 (reworked)				W09_OF2: broken JTAG module, W09_OB1 reworked (SW2 replaced)
W11_OF1			W12_OB1				W12_OB1: grade B
W32_OF2			W12_OB2				W12_OB2: grade B
W33_OF1			W32_OB2				
W33_OF2			W33_OB1				
W41_OF1			W42_OB1				
W45_OF1			W42_OB2				
W46_OF1			W44_OB2				
W46_OF2			W45_OB2				
W02_OF1			W46_OB1				
W03_OF2			W46_OB2				
W04_OF1			W04_OB1			,	W04_OB1: short between DCD_AVDD and GND (will be sent form GOE to HLL for analysis)
W05_OF1			W10_OB1				
W11_OF2			W06_OB1			L2_022	Visual inspection after ladder gluing showed cracks in W06_OB1
W12_OF1			W44_OB1			L2_024	shorts after glueing, after etching "repair" high source current
W32_OF1			W09_OB2			L2_029	

23

W44_OF2

- Faulty switcher could be identified by thermal imaging
- Module broke during the rework @ IZM

Module	Fault	Action	Result
W31_OB1	Not identified.	None taken.	Module glued to L2_010
W44_OF2	Switcher3	Replace Switcher3.	Module broke during rework.

• W08_IF Fails during Source Scan

- Without a source over the matrix: no sign of the affected area
- With a source over the affected area: about 10 times as many hits as expected; distribution with no apparent link to the source geometry
- With a source somewhere else over the matrix: about half of the affected area (the part of the region that showed less/no signal before) shows hits

Belle II PXD Meeting - DESY 08.10.2018

C. Koffmane, MPG Semiconductor Lab

• W05_IF (with Kapton)

Module has short between Drain and Source:

- Short was not caught during production QA due to unexpected measurement value (currents O(+10^22A)), was flagged as open instead of short
- Appeared as a single missing electrical column in needle-card test
- First found as single hot line during mass-testing (MPP)
- Damage appears to be growing over time, compromising electrically neighboring lines on DCD4

• W05_IF (with Kapton)

Possible solutions:

- \Rightarrow Cut drain line between DCD and matrix
 - Possible damage on neighboring lines during cutting (very narrow region)
- \Rightarrow Removing DCD4 and disconnecting the bump-ball of the affected channel A0<27>
 - Replacement of DCD4
- Module used to check power-up/-down sequence at MPP

• **W08_IF** Laser Spot during Probe Card Tests

- MPG HILL
- No sign of the problem could be seen during needle-card measurements as it is not visible in pedestals (even with laser spot)

• **W08_IF** Laser Spot @ pxdtest5 (w/ kapton)

• Nor during pedestals measurements (with laser spot) during with kapton

Same with pxdtest5:

Failure mode is not understood

- Ghost hits only in rows connected to SW4 (exchange of SW4)
- Debugging could be continued using a laser (small spot, controlled timing)

Repaired: **W09_OF1** – with Kapton L2fwd_V30_200_027

- No clear evidence for the short between GND and DCD_AVDD
- Possible failure mechanism:
 - Connection between the solder pads (AGND and DCD_AVDD are neighboring pads on the bottom of the kapton), x-ray image (on the right side) not suspicious
 - Damaged/misplaced connection of the SAMTEC connector to the Lab Patch Panel
- Kapton was exchanged and module W09_OF1 passed the testing with kapton L2fwd_V30_200_041

Photos of kapton L2fwd_V30_200_027

SW_SERIN (differential line) SW_CLK