Lab Characterization Results Matrix biasing and depletion, gain and efficiency homogeneity

Philipp Wieduwilt¹, Pablo Gomis², Harrison Schreeck¹, Benjamin Schwenker¹, Ariane Frey¹

¹Universität Göttingen ²IFIC (UVEG/CSIC)

philipp.wieduwilt@phys.uni-goettingen.de

October 8, 2018

Signal and noise homogeneity (Pablo)

2 DCD gains and g_q (Pablo)

3 Measurement of doping variations

Sensor response/homogeneity and gain measurements

- measurements and analysis by Pablo
 - \rightarrow How to optimize matrix biasing?
 - \rightarrow Variations of signal and noise over sensor?
 - \rightarrow DCD gain and g_q determination
- data from module W46_OF2
 - mass testing/characterization: grade A

Signal and noise homogeneity (Pablo)

hitmaps at different biasing conditions

P. Wieduwilt (Uni Göttingen)

biasing optimization: procedure

biasing optimization: results

 $\Delta V_{clear-drift} = 6, 7 V$

signal variation in DCD/Switcher regions

noise variation in DCD/Switcher regions

SNR variation in DCD/Switcher regions

P. Wieduwilt (Uni Göttingen)

DCD gains

energy calibration

DEPFET g_q

WHEN CORRECTED BY THE DCD GAIN THE 4 CURVES OVERLAP

THE CURVE SHOWN IS THE MEAN OF THE 4 ASIC CURVES

Measuring bulk doping variations

• Can we measure bulk doping variations on PXD9 sensors?

- \rightarrow resolve (ring) structures?
- \rightarrow measure amplitude of variation?
- ightarrow choose biasing not sensitive to doping variations?
- data from modules
 - W40_IF (Göttingen guinea pig)
 - W03_OB1 (grade A)
- lab measurements on final PXD9 modules with Sr90 β -source
 - correlate charge collection efficiency to measured signal MPV
 - $\bullet\,$ varying HV \leftrightarrow varying varies sensor depletion
 - varying biasing conditions (drift, clear-off)

Single DEPFET pixel simulations (Rainer)

Measuring MPV per DCD/Switcher region

- Sr90 β -source
- cluster charge histograms per DCD/Switcher region
- fit Landau distribution
- MPV per region \rightarrow

MPV evolution with HV

Correcting for Switcher gradient and DCD gain

Simulation \leftrightarrow measurement

Under- and over-depletion

under-depletion

- HV too low for depleting bulk with doping concentration Nbulk
- $\rightarrow\,$ charges recombine with remaining charge carriers

over-depletion for DEPFET

- high HV fully depletes bulk, but charges are pushed into clear structures
- \rightarrow charges lost

Changing the matrix biasing

Finer HV stepping and smaller macro pixels

Quantifying the HV shift

for each macro pixel

HV shift maps

- relative HV shift w.r.t. median of all HV values at falling edge
- ring structures clearly visible
- HV shifts in the order of 1100mV
- \Rightarrow measuring doping variations at an arbitrary scale

HV shift maps - independent of biasing

HV shift maps - W03_OB1

Biasing optimization

Conclusion and next steps

- check MPV fitting error estimation (\rightarrow ROOT/RooFit)
- map to physical distances (µm instead of pixels)
- add information on postion on wafer
 - (concentric) rings around wafer center?
 - agreement between modules from same wafer?
- translate HV shifts to absolute doping variations \rightarrow ?
- \bullet collect statistics \rightarrow mass testing
- detailed TB studies about impact on absolute and sub-pixel efficencies

Backup