Highlights of Radiation Damage Studies at HH

Alexandra Junkes Institut für Experimentalphysik Detector Laboratory

Physics at the Terascale 12.11.2009, DESY Hamburg

Alexandra Junkes (Hamburg University)

Detector Laboratory at Hamburg University

*Partially funded by HGF Alliance

Radiation Induced Damage

Bulk damage results in changes of detector properties such as

- Field distribution
 ⇒ Depletion voltage
- Dark current
- Trapping

Approaches

 Understand radiation damage by combining microscopic (defect characteristics) and macroscopic (detector properties) measurements ⇒ "defect engineering"

- Find best material and geometry
- Optimise environmental and operational conditions
- \Rightarrow cooling, high bias

Effective Doping Concentration

- Thermally Stimulated Current (TSC) for Φ = 2x10¹⁴ cm⁻² n
- Current due to emission from filled traps ⇒ defect concentrations

Reverse annealing can be explained by deep acceptor traps

Towards the Origin of Dark Current

- Deep Level Transient Spectroscopy (DLTS) for Φ = 3x10¹¹ cm⁻² n
- Capacitance transients during the emission from filled traps

Close correlation to cluster related deep electron traps

Alexandra Junkes (Hamburg University)

Charge Collection Studies

Topics CCE/trapping in damaged sensors Plasma effect

⇒ S-LHC
⇒ European XFEL

TCT setups with different properties at UHH

- 5.8 MeV α -particles with absorbers
- 670, 830, 1060 nm laser light (with improved stability/CCE precision)
- Multi-Channel TCT

Multi-Channel TCT Setup

Research aims

- TCT on segmented sensors
 - pulse shapes
 - Trapping effects
 - electric field profiles
- Effects of high charge carrier densities (plasma effects PE)
 - charge collection times
 - spatial distribution of charge clouds

Key features

- fast (≤ 100 ps FWHM) laser pulses
 - ≤ 3 µm spot size
 - 660 nm, 1015 nm, 1052 nm wavelength*
- x-y-z position control
- multi GHz bandwidth electronics (<100 ps risetime)
- 32 channels (4 simultaneously)
- temperature control (-30 °C to 50 °C)
- front and back side injection possible

*absorption length: 660 nm -> 3 μm ~ 1 keV γ 1015 nm -> 250 μm ~ 12 keV γ 1052 nm -> 900 μm ~ mips

Results Linked to PE in Strip Detectors

Rise of Charge Collection Time

Spatial Broadening

9x10⁷ e-h pairs = 3.24x10⁵ 1 keV γ, σ≈ 3μm
rear side illumination with 660 nm laser

Strong impact on detector design for European XFEL

Trapping and Charge Multiplication

- Trapping: most limiting factor at S-LHC fluences
 ⇒ Degradation of Charge Collection Efficiency (CCE)
- But at high fluences and voltages: CCE>1
 ⇒ Trapping overcompensated by Charge Multiplication (CM)
- Can CM be used for highly damaged S-LHC detectors?
 ⇒ Detailed understanding of the formation and properties of CM in irradiated sensors needed

Localisation of CM Region

• Most extreme CM example: n-EPI-ST 75 μ m, Φ_{eq} =10¹⁶ cm⁻² (24 GeV/c p)

CCE

12.11.2009

Smaller penetration depth

 \rightarrow stronger charge multiplication

 \Rightarrow multiplication region (high field) located at the front side

Charge Spectrum, Homogeneity, Stability

- Normalised width of charge spectrum constant also in CM regime
- ⇒ Stat. fluctuations not relevant
- CM is very homogeneous over detector area

 CM is stable for days (at high voltages limited by micro discharges)

Summary

- Breakthrough in understanding radiation damage
 - \Rightarrow Understanding reverseannealing
 - ⇒ Close correlation for deep defects to dark current
- Multi Channel TCT part of virtual laboratory
 - \Rightarrow External users welcome
 - \Rightarrow Plasma investigations for European XFEL
- Charge multiplication a promising solution to overcome trapping in S-LHC

