

Search for Lepton Flavor Violation in the decay $\tau \to \mu \mu \mu$ at LHCb

Marco Meißner, Johan Blouw, Ulrich Uwer

Physikalisches Institut,

Heidelberg University

Helmholtz Alliance

Hamburg, 12th November, 2009

Overview

- Introduction to Lepton Flavor Violation
- Tau-Production at LHCb
- > Monte-Carlo study of the $\tau \rightarrow \mu \mu \mu$ decay
 - Signal selection
 - Trigger efficiencies
- Upper limit estimation for the branching fraction
- Conclusion

Introduction

Lepton Flavor Violation (LFV) is forbidden in the Standard Model!

A lot of new physics models predict LFV BR up to $O(10^{-8})$

Any measurement of LFV indicates "new physics"

Current upper limit: $BR(\tau \rightarrow \mu\mu\mu) < 3.2 \times 10^{-8}$ (Belle 08)

Tau Production @ LHCb

LHCb is a forward-spectrometer!

Main production channels for Taus:

- Hadrons with b Quark $\sigma_{b\to\tau} = 59 \mu b$ Hadrons with c Quark $\sigma_{c\to\tau} = 51 \mu b$ $\int \sigma_{total} = 110 \mu b$

Tau source	Decay channel	Fraction of all taus
$D^{+/-}$	prompt $D^{+/-}$ or $D^{*+/-}$ from any B hadron	1.4% 0.5%
$D_s^{\scriptscriptstyle +/-}$	prompt $D_{s}^{{\scriptscriptstyle +/-}}$ or $D_{s}^{{\scriptscriptstyle +/-}}$ from any B hadron	44.5% 16.4%
$B^{+/-}$	prompt $B^{+/-}$	15.3%
$oldsymbol{B}^0$ / $oldsymbol{\overline{B}}^{0}$	prompt $oldsymbol{B}^0$ / $oldsymbol{\overline{B}}^0$	15.2%
$oldsymbol{B}_{s}^{0}$ / $oldsymbol{\overline{B}}_{s}^{0}$	prompt $oldsymbol{B}^{0}_{s}$ / $\overline{oldsymbol{B}}^{0}_{s}$	4.4%
Λ^0_b / $\overline{\Lambda}^0_b$	prompt Λ_b^0 / $\overline{\Lambda}_b^0$	2.4%

Expected number of τ produced in 1 year at an integr. lumi of $2 \mathrm{fb}^{-1}$:

Good opportunity to study rare tau decays!

$\tau \rightarrow \mu \mu \mu$ Signal

→ data sample with ~50k events in the detector acceptance generated with phase space model corresponds to ~53 fb⁻¹ ($BR = 3.2 \cdot 10^{-8}$)

Background

- 3 Categories for BG muon combination:
- real muons from cascade B- and D-decays
- false reconstructed muons from "ghost" tracks
- misidentification due to pions & kaons
- inclusive bb -> dimuon sample ~26M events, corresponds to 5.3pb^{-1}

Mass distribution for reconstructed $\tau \rightarrow \mu\mu\mu$ events

Particle identification

Example: muon misidentification by pions discriminating variable DLL (delta log likelihood) for worst identified muon

		Cut variable	Signal rejection (N-1)	BG rejection (N-1)
Muon kinematic & topology		min-Pt(μ) > 0.35 GeV	3.4%	50.0%
		max-Pt(μ) > 1.1 GeV	4.5%	75.0%
		min-IPS(μ) > 2.5	15,2%	85.7%
		max-IPS(μ) > 6.0	4.6%	50.0%
		inv. mass(2µ)>240 MeV	0.3%	50.0%
Particle identification		DLL(μ-pi) > -2.5	5.5%	80.0%
		DLL(μ-K) > 6	21.2%	98.1%
		NShared ≤ 2	1.1%	50.0%
		"clonefinder"	4.0%	75.0%
Vertex Quality		DOCA(µ,µ) < 0,065mm	3.1%	66.7%
		Chi²(tau vtx) < 5.8	9.6%	90.0%
Tau Topology		cos(φ) > 0.99991	0.8%	95.5%
		IPS(tau) > 7.0	18.3%	94.4%

After applying all selection cuts:

858 Signal events (30MeV mass window)

Reconstruction & selection efficiency:

1 Background event (120MeV mass window)

Reconstruction & selection efficiency:

$$\varepsilon_{total}^{Sig} = \frac{858}{52 \cdot 10^3} = 1.39\%$$
$$\varepsilon_{total}^{BG} = \frac{1}{4 \cdot 26.2 \cdot 10^6} = 9.5 \cdot 10^{-9}$$

Trigger Efficiencies

LHCb trigger system

- Hardware trigger (L0)
 detector readout with 1.1MHz
- Software trigger (HLT) confirm L0-decision and reduce rate to 2kHz

Performance for $\tau \rightarrow \mu\mu\mu$ events:

Trigger	Efficiency	
L0 trigger	92.7%	$41 - muon : p_t(1) + p_t(2) > 1.5Ge$
HLT	72.2%	single muon $p_t > 1.50ev$
HLT + exclusive trigger	86.6%	exclusive $\tau \rightarrow 3\mu$ trigger :
		similar to offline selection

Upper limit estimation

upper limit Branching ratio with $2fb^{-1}$: $BR \le 3.9 * 10^{-8}$ (90% CL) Current upper limit from Belle: $BR \le 3.2 * 10^{-8}$ (90% CL)

- Sources for τ @ LHCb are B- and D-Mesons around $6 \cdot 10^{10} \tau$ will be produced in 1 nominal year
- Performed a Monte-Carlo Study built a selection good trigger efficiency for $au o \mu\mu\mu$ decays
- LHCb could improve upper limit of the BR depending on MC data expect better results with real data

Backup

Hamburg, 12.11.2009

Marco Meißner, Physikalisches Institut (Heidelberg University)

Transverse momentum

Hamburg, 12.11.2009

Marco Meißner, Physikalisches Institut (Heidelberg University)

<u>NShared</u> = number of additional tracks, which share hits with this track

small NShared \longrightarrow high purity & small muon-missidentification rate

Muon Clones

Idea:

Some fraction of the background consists of "fake" muons. These are clones made in the muon system.

Typical event with a "clone":

 $\mu(1)$: # of hits = 12

- $\mu(2)$: # of hits = 12
- $\mu(3)$: # of hits = 7

Current criteria for clones:

identical hits $\mu(1) \& \mu(2) = 11$

- # identical hits $\mu(2) \& \mu(3) = 0$
- # identical hits $\mu(1) \& \mu(3) = 0$

identical hits of $\mu(i)\&\mu(j) = [\# \text{ total hits } \mu(i)/\mu(j), \# \text{ total hits } \mu(i)/\mu(j) - 2]$

Efficiency of the clonefinder:

For Background:	Background: # of reconstr. events after preselection:	
	# of rejected events with a "clone":	86449 (20%)
For Signal:	# of reconstr. events after preselection:	9532
	# of rejected events with a "clone":	211 (2,2%)