3rd Helmholtz Alliance Workshop – Flavour WG

November 12th, 2009

D⁰ – D⁰ Mixing Measurement at LHCb

Jörg Marks, Ulrich Uwer, Peter Weidenkaff

Physikalisches Institut University of Heidelberg

Outline

Introduction

- Charm mixing and analysis strategies
- Trigger and data selection
- Toy simulation studies on the fit of mixing parameters

Summary

Introduction

> Recent history of D^0 mixing meaurements

Beginning of 2007 the Belle and *BABAR* Collaborations presented evidence for $D^0 - \overline{D}^0$ Mixing, CDF II presented evidence end of 2007

A combination of all mixing measurements provides a ~10 σ effect

- Neutral meson mixing has been already observed in the K (1956), B (1987) and B (2006) systems
- > Why is D^0 mixing interesting ?
 - Processes with down type quarks are involved in the mixing loop
 - Within the Standard Model mixing and CP violation in the charm sector are expected to be small
 - Depending on the measured values of the parameters it could indicate new physics

 \blacktriangleright Discuss prospects to measure D^0 mixing in the decay $D^0 \rightarrow K\pi$ at LHCb

/larks

4

 $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

Mixing Formalism

Neutral D⁰ mesons are created as flavor eigenstates of the strong interaction. They can mix through weak interactions.

The time evolution is obtained by

$$i\frac{\partial}{\partial t} \begin{pmatrix} D^0(t)\\ \bar{D}^0(t) \end{pmatrix} = (M - \frac{i}{2}\Gamma) \begin{pmatrix} D^0(t)\\ \bar{D}^0(t) \end{pmatrix}$$

 \succ The physical eigenstates are D₁ and D₂:

 $|D_{1,2}\rangle = p|D^0\rangle \mp q|\bar{D}^0\rangle$ D_1 : CP even D_2 : CP odd $|D_{1,2}(t)\rangle = e^{-i(M_{1,2} - i\Gamma_{1,2}/2)t} |D_{1,2}(t=0)\rangle$

 \succ Define mass and lifetime differences of D₁ and D₂:

$$x = \frac{\Delta M}{\Gamma} = \frac{M_1 - M_2}{\Gamma} \qquad y = \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

$$|D^{0}\rangle \frac{\bar{u}}{c} \xrightarrow{\bar{c}} |\bar{D}^{0}\rangle$$

Mixing in $D^0 \to K\pi$ - Flavor Tagging

- Flavor tagging at production time
 - Standard technique in charm physics: use

$$Q = m(D^0\pi^+) - m(D^0) - m(\pi^+) \approx 6MeV$$

 $D^{*+}\left\{\begin{array}{c}c\\\bar{d}\end{array}\right\} D^{0}$

- ♦ Narrow peak in $\Delta m = m(D^0\pi^+) m(D^0)$ due to a small Q
- * The charge of the low energy π determines the flavor of the D⁰

Flavor at decay time

► Use final state particle properties to tag the D⁰ flavor at the decay time $D^0 \rightarrow K\pi$:

Wrong Sign Decay (WS) D⁰ Mixing

Right Sign Decay (RS) no D⁰ Mixing

Decays Classes $D^0 \rightarrow K\pi$

The flavor tagging at decay time does not uniquely identify Mixing in hadronic D⁰ decays

```
Cabibbo favored (CF)
decay
         R \approx 1
```


11

Interference between DCS and mixed CF decay

Time Evolution in $D^0 \to K\pi$ Decays

 $\delta_{K\pi}$ is the strong phase between CF and DCS amplitudes ($D^0 o K\pi$)

Analysis Strategy

BABAR approach

- Determine signal and background PDF's by unbinned max. likelihood fit
- Unbinned maximum likelihood fit of the wrong sign D⁰ decay time distribution **BABAR** (384 fb⁻¹) PRL 98, 211802 (2007)

Use the fit results of RS decay time and the resolution function

signal / RS 9 900'0 800'0 8 mixing fit no mixing fit **W**S $\frac{\Gamma_{WS}(t)}{e^{-\Gamma t}} = R_D + y'\sqrt{R_D}\Gamma t + \frac{x'^2 + y'^2}{4}(\Gamma t)^2$ no mixing fit 0.004 mixing fit 2 6 8 10 O $t[au_{D^0}]$

CDF approach

1.5 fb⁻¹

Measure the Number of WS and RS

D⁰ decays in bins of the decay time $N_{RS}^{tot} = (3.044 \pm 0.0023) \cdot 10^6$ $N_{WS}^{tot} = (12.7 \pm 0.3) \cdot 10^3$

 \succ Fit the $N_{WS}^{tot}/N_{RS}^{tot}$ vs the D⁰decay time arXiv: 0712.1567 (2007) signal 0.01 CDF II

MC Data Sample

Data samples

- $D^{*+} \rightarrow \pi^+ (D^0 \rightarrow \{K^+\pi^-, K^-\pi^+\}) + cc$ 1·107 signal events $\equiv \int \mathcal{L} \approx 0.33 \, pb^{-1}$
- 3.6.10⁶ L0 triggered min. bias events

Trigger mainly via hadron lines

- Selection $D^0 \to K\pi$ via $D^* \to \pi D^0 \to \pi K\pi$
 - Perform a preselection based on m, p, p_t of the D^*, D^0 and the daughter hadrons.
 - Final selection is based on

 \star particle id of K,π

- x track and vertex fit quality
- ${\it x}$ track distance and significance of π_s to the primary vertex and of $K,\pi\,$ to the $D^0\,$ vertex
- × D^0 flight length significance
- *x* pointing to primary vertex

Data Selection Results

	signal		minbias
	RS	WS	RS
signal	8325(8617)	48(52)	9(9)
background	483(650)	25(199)	2(2)
secondary D*	318(327)	1(1)	1(1)
ghosts	131(168)	3(19)	0(0)
double mis-id	0(0)	5(15)	0(0)
random SlowPi	16(127)	12(151)	1(1)
D ^o combinatoric	0(0)	0(0)	0(0)

Secondary D^* background: 3.5% produces D^0 which seem to have large decay length

- Selection efficiency on HLT1 triggered events: $\epsilon_{sel} = 0.10$
- Expected RS (WS) events $\int \mathcal{L} \approx 50 \, pb^{-1} \equiv 1.3 \cdot 10^6 \quad (4.5 \cdot 10^3)$

WS and RS Data

- background contributions
 - random slow π
 - mis id π or K
 - combinatoric

Jörg Marks

\succ Extract N_{RS} and N_{WS}

- Split data in $\Delta t_j(D^0)$
- Obtain for each bin Δm_i the number of signal events $N_i(\Delta m_i)$ in a fit to the D^0 mass distribution

•
$$N_{RS/WS}(\Delta t_j) = \sum N_i(\Delta m_i)$$

D^0 Lifetime and Mass

D⁰ lifetime after selection

\succ D⁰ mass after selection

Toy MC Simulation

Develop Toy Monte Carlo Simulations to understand mixing parameter extraction, fitting strategies and statistical significance of the results.

Determine D⁰ decay time and time resolution in RS events using an unbinned maximum likelihood fit to the lifetime measurement.

Toy Simulations – RS Decays

\succ Cut in the D^0 lifetime distributions

 $t_{cut} = 0.5 \cdot \tau_{D^0}$

Applying t_{cut} the fit does not allow to determine t_0, σ Still measure D^0 decay time

Pull Distribution: 1000 toy simulations, 10⁶ events:

Mixing Parameter Determination

► Measure the number of WS and RS $D^0 \to K\pi$ decays in bins of of the decay time t and determine $R(t) = N_{WS}/N_{RS}(t)$

Simulate decay time distributions of of WS and RS decays

 $\sigma_t = 0.040 \ ps$ $\tau_{D^0} = 0.41 \ ps$ $x = 0.01 \ y = 0.01 \ R_D = 0.003$

- > Obtain N_{RS} and N_{WS} for a given binning in the decay time
- > Fit $R = N_{WS}/N_{RS}$ as function of the average decay time in each bin

$$\rightarrow \sqrt{R_D}, y', x'^2$$

Fit Results - Decay Time Acceptance

Systematic errors due to cuts in the decay time distribution

Generate 1000 toy sets / point (10⁶ events each) for different cuts in decay time

Fit Results - Decay Time Acceptance

Decay time acceptance from the trigger

Using triggered prompt $D^{*\pm}$ decays the HLT1 acceptance is derived and included in the toy simulation. Decay time resolution: $\sigma_t = 0.040 \ ps$

- Errors of the mixing parameters are similar to the no cut case
- Mean and width of the pull distributions of the mixing parameters show that the fit is unbiased

Pull Distributions: 500 toy simulations, 10⁶ events

Fit Results - Background Dependence

\blacktriangleright Systematic errors due to $B \rightarrow D^*$

 $D^{*\pm}$ from *B* decays are background to the WS and RS decay time distributions. Simulate exponential decay time distr. from *B* decays.

- Errors and width of the pull distr. of the mixing parameters are unchanged
- Systematic changes of the mixing parameters on the 3 sigma level

Prospects at LHCb

Summary

- ➤ 50 pb⁻¹ of LHCb data yields the amount of $D^0 \to K\pi$ events used in the BABAR D^0 mixing analysis
- > We select $D^0 \rightarrow K\pi$ events in HLT1 triggered data with 10 % selection efficiency
- > Using toy MC we test a scheme to extract decay time and mixing parameters in fits to RS and WS $D^0 \rightarrow K\pi$ decay time distributions

Back up Slides

Time Evolution and Mixing

Mixing will occur if either x or y is non – zero. The time evolution of the probability to find a $D^0(\overline{D}^0)$ after a time t is:

$$\begin{split} &I(D^{0} \to D^{0};t) \,:\, |\langle D^{0} | D^{0}(t) \rangle|^{2} = \frac{e^{-\Gamma t}}{2} [\cosh(y\Gamma t) + \cos(x\Gamma t)] \\ &I(D^{0} \to \bar{D}^{0};t) \,:\, |\langle \bar{D}^{0} | D^{0}(t) \rangle|^{2} = \frac{e^{-\Gamma t}}{2} [\cosh(y\Gamma t) - \cos(x\Gamma t)] |\frac{p}{q}|^{2} \end{split}$$

 3^{rd} Helmholtz Alliance Workshop: $D^0 - \overline{D}^0$ Mixing at LHCb

Charm Mixing Processes

- The box diagram contributions to charm mixing in the Standard Model are expected to be very small

 - ♦ Lowest order short distance calculation: $x_{box} \cong O(10^{-5})$ $y_{box} \cong O(10^{-7})$ ♦ x and y enhancement due to higher orders in OPE: $x \sim y \cong O(10^{-3})$
- Long distance contributions dominate Numerical predictions lack in precision $D^0 - \bar{D}^0 - \bar{D}^0 - x \approx O(10^{-2})$ $y \approx O(10^{-2})$

New Physics

- E.Golowich et al.: arXiv:0705.3650
 Which new physics model can yield sizeable values for x and y
- CP violation in charm is small in SM Measurement of CPV: New Physics

Selection Details

 $PreSelection \ M(D^0) = M_{PDG} \pm 80 \, MeV \ M(D^*) = M_{PDG} \pm 80 \, MeV \ \Delta M < 20.5 \, MeV \ \Delta M < 20.5 \, MeV \ p(D^0) > 10 \, GeV \ p_t(D^0) > 2 \, GeV \ p_t(D^*) > 2 \, GeV \ p_t(D^*) > 5 \, GeV \ p_t(h) > 500 \, MeV$

 $\Delta M = M(D^0\pi) - M(D^*)$

Signal Region

 $egin{aligned} M(D^0) &= M_{PDG} \pm 25 \ MeV \ 4 \ MeV < \ \Delta M \ < 7.5 \ MeV \ IP(D^0) < 0.05 \ mm \end{aligned}$

$D^0\&hh$

 $\begin{array}{l} DLL(\pi) < 0 \ DLL(k) > 8 \\ \chi^2/Ndof(track \ hh) < 2 \\ doca < 0.08 \\ cos(\xi) < -0.92 \\ p_t(D^0) > 5 \ GeV \\ p(D^0) > 40 \ GeV \\ dira > 0.99997 \\ f \ DistanceSig > 4 \\ \chi^2/Ndof(D^0vtx) < 5 \end{array}$

$D^* \& \pi_{slow}$

 $DLL(\pi_s) < -2.5$ $IP(\pi_s) < 0.15 mm$ $p_t(\pi_s) > 350 MeV$ $\chi^2/nDoF(track \pi_s) < 2$ $IP(D^*) < 0.035 mm$ $\chi^2/Ndof(D^*vtx) < 5$

