

ATLAS Prospects in B-physics Channels Sensitive to New Physics

3[™] Annual Workshop Helmholtz Alliance "Physics at the Terascale"

12 November 2009

DESY, Hamburg

Wolfgang Walkowiak

walkowiak@hep.physik.uni-siegen.de

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

ATLAS B-physics Program

B-physics uses μ -based triggers:

- LVL1: coincidences from fast muon trigger chambers (TGCs, RPCs) provide seeds for Regions of Interest (RoI)
 - LVL2: confirmation of LVL1 signature using precision muon chamber and Inner Detector measurements in Rol; fast vertex fits and invariant mass cuts possible
 - **EF:** refinement of LVL2 selection with offline-like algorithms; full event, alignment and calibration data available; vertex fit and invariant mass cuts possible
- 10% of total trigger resources dedicated to B-physics
 → fast, efficient and selective trigger needed!

B-physics Triggers for Di-muon Events

- Di-μ signature in many B-physics channels
 e.g. B → J/ψ(μμ)X, b → s μμ, B → μμ
- Muons have low momenta (often < 10 GeV)
- **Strategy:** Di-µ signature at lowest possible trigger threshold

Two approaches:

- Topological di-µ trigger (main B-physics data taking)
- 2 μ at LVL1 with separate Rols combined at LVL2 with cuts on m_m and μμ-vertex fit
- TrigDiMuon (for early data)
- 1 μ at LVL1, at LVL2 search for 2rd μ in widened Rol in Inner Detector and confirm in muon detectors; apply m_{μμ} cut

 $J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

Mixing

Decay

Interference of mixing and decay amplitudes \Rightarrow CP violation

 Same final state for B⁰_s and B⁰_s with possible mixing

 Main parameter of interest: weak mixing phase

$$\phi_{s} \equiv 2 \arg \left[V_{ts}^{*} V_{tb} \right] + \phi_{BSM}$$

$$\phi_{s}(SM) \approx -0.04$$

- New sources of CP violation $\Rightarrow \phi_{BSM}$
- Physics parameters: $|A_{\parallel}|, |A_{\perp}|, \delta_{\parallel}, \delta_{\perp}$ (transversity amplitudes) $\Gamma_{s}, \Delta\Gamma_{s}, \Delta m_{s}, \phi_{s}$

Introduction to $B_s \rightarrow J/\psi \phi$ and $B_d \rightarrow J/\psi K^{0*}$

- $B_{d}^{0} \rightarrow J/\psi(\mu^{+}\mu^{-}) \ K^{*0}(K^{+}\pi^{-})$:
- Topologically identical decay
- 15 x larger statistics
 - Primary background
 - Control channel
- High precision tests of lifetime systematics
- Flavor tagging calibration

 $B_s^{0} \rightarrow J/\psi \phi$:

- Physics parameters extraction with *maximum likelihood fit* to angular distributions for θ_1, θ_2, Φ and τ_{B_s}
- Analysis is sensitive to
 - Statistics
 - Experimental resolutions of $\theta_1, \theta_2, \Phi, \tau_{B_s}$ and m_{B_s}
 - Flavor tagging performance
 - Background rejection
- Determination of physics parameters needs larger statistics
 - Begin with calibration measurements

20⊢

<u>₿</u>₩

ATLAS

Mass (MeV)

990 1000 1010 1020 1030 1040 1050 1060 1070

鼢

Mass (MeV)

ATLAS

Mass (MeV)

$B_d \rightarrow J/\psi K^{0*}$ with early data

Earliest data (\geq 10 pb⁻¹)

- $\varepsilon_{reco}(signal) = 42.0 \%$
- 1024 candidates @ 10 pb⁻¹
- Simultaneous fit of m_B and $\Gamma_{\rm R}$
- Precision on $\Gamma_{\rm B} \sim 10\%$
- Tests of tracking p_{τ} scale with \geq 150 pb⁻¹
- Improve world precision on $m_{\rm B}$ and $\Gamma_{\rm B}$ with ≥ 1 fb⁻¹

10

Decay time (ps)

$f = B_s \rightarrow J/\psi \phi$ with early data and later

Early data (\geq 150 pb⁻¹)

- ε_{reco}(signal) = 40.5 %
- ~ 1155 candidates @ 150 pb⁻¹
- Simultaneous fit of $m_{\rm B_S}$ and $\Gamma_{\rm B_S}$
- Precision on $\Gamma_{B_s} \sim 10\%$
- Improve world precision on m_{B_s} and Γ_{B_s} with ≥ 1 fb⁻¹

With 30 fb⁻¹ (~ 3 years)

- Expect ~ 240 000 events
- Secondary vertex cut
- ~ 30% background, mostly B⁰ → J/ψ K^{*0} and bb → J/ψ X

• $\sigma_{\text{proper time}} \sim 83 \text{ fs}$

Wolfgang Walkowiak, University of Siegen

		100 pb	
Parameter	Simulated	Fit result	
Г _{вs} [ps -1]	0.683	0.743 ± 0.051	
m _{Bs} [GeV]	5.343	5.359 ± 0.006	
$\sigma_{_{ au}}$ [ps]		0.152 ± 0.001	
σ _m [GeV]		0.061 ± 0.006	

150 nh-1

Search for Rare Decays

Very rare decay $B_s{}^0 \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

- FCNC decay with helicity suppression \Rightarrow BR_{SM} = (3.42 ± 0.52) x 10⁻⁹ tiny!
- Test of SM to high pertubative orders
 → BR_{meas} ≠ BR_{SM} ⇒ New Physics!
- Current upper limits:

- D0 (5 fb⁻¹): BR_{B_S→µ} < 4.5 (5.3) x 10⁻⁸ @ 90% (95%) CL [D0 Note 5906-CONF 2009]
- CDF (2 fb⁻¹): $BR_{B_{S \to \mu}} < 5.8 \times 10^8 @ 95\% CL$

[Phys. Rev. Lett. 100, 101802 (2008)]

Semi-leptonic rare B-decays (b \rightarrow s(d) $\mu^{+}\mu^{-}$)

•
$$B_0 \rightarrow K^{*0} \mu \mu$$

- $B_s \rightarrow \phi \mu \mu$,
- $\Lambda_b \rightarrow \Lambda \mu \mu$,
- $\bullet \quad B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \ \mu \mu,$
- $B^+ \rightarrow K^{*+} \mu \mu$

BRs ~ 10⁶, mediated by FCNC (1-loop diagrams) $b \rightarrow$ measure di- μ spectra,

- differential cross-sections
 - and forward-backward asymmetry (A_{fb})

Not covered in this talk

 v_{tb} w v_{ts} s t γ , Z^0 ℓ^+ t-W loop ℓ^-

• Measure BR relative to $B^+ \rightarrow J/\psi (\mu^+\mu^-) K^+$ as reference:

- Use topological di- μ trigger (at L = 10³³ cm⁻²s⁻¹)
 - LVL1 & LVL2: 2 μ with p_T > 6 GeV
 - → LVL2 & EF: $M_{_{IIII}}$ < 7 GeV, vertex χ^2 < 10

	Trigger performance for	Level	Efficiency
	$B_s^{\ 0} \rightarrow \mu\mu \text{ events}$	L1 x L2	52 %
•	Possible at 10 ³⁴ cm ⁻² s ⁻¹	EF w.r.t. L2	88 %
	with increased thresholds	Overall	46 %

(MC generation with $p_{\tau}(\mu) > 6 \text{ GeV } \& |\eta_{\mu}| < 2.5 \text{ for both } \mu$)

Offline Analysis Strategy for $B_s \rightarrow \mu\mu$ (1)

For 10 fb⁻¹ (assuming SM):

- Signal and background of similar order after all cuts
- Expecting about 5.7 signal and 14⁺¹³ background events

Already with 1 fb⁻¹:

- O(10⁶) di-μ events with 4 < m_μ < 7 GeV
- Tune cuts
- Train multivariate procedures

 $B_s \rightarrow \mu\mu$ program will continue for whole life of ATLAS detector

Cut	$\epsilon(B_s \rightarrow \mu\mu)$	ε(bb →	μμ Χ)
Ι _{μμ} > 0.9	0.24	(2.6 ± 0.3	3) x 10 ⁻²
L _{xy} > 0.5 mm	0.26	(1.4 ± 0.1) x 10 ⁻²	$(1.0 \pm 0.7) \times 10^{3}$
α < 0.017 rad	0.23	(8.5 ± 0.2) x 10 ⁻²	$(1.0 \pm 0.7) \times 10^{\circ}$
$M_{\mu\mu}$ in [- σ , +2 σ]	0.76	0.079	
Total	0.04	0.24 x 10 ⁻⁶	$(2.0 \pm 1.4) \times 10^{-6}$
Event yield	5.7		14 ⁺¹³ -10

- ATLAS B-physics program will start with early data and continue to indirect searches for New Physics via B-hadron decays
- ATLAS provides an efficient, fast and clean di-μ trigger scheme to collect large numbers of B-hadron decays with μμ final states
- ATLAS prospects:
 - ~ 270 000 $B_s \rightarrow J/\psi \phi$ events with ~ 30% background @ 30 fb⁻¹
 - 5.7 $B_s \rightarrow \mu\mu$ events with 14^{+13}_{-10} of main background @ 10 fb⁻¹ assuming Standard Model branching ratios
- Early data will be used for
 - valuable detector performance studies
 - calibration studies supporting New Physics searches

[Main reference: The ATLAS collaboration, "Expected performance of the ATLAS experiment : detector, trigger and physics", CERN-OPEN-2008-020]

Angular distributions for $B_s \rightarrow J/\psi \phi$

k	$\Omega^{(k)}(t)$		g(t)
1	$ A_0(t) ^2$		$4\sin^2 heta_1\cos^2 heta_2$
	$\frac{1}{2} A_0(0) ^2$	$(1+\cos\phi_s)e^{-\Gamma_L^{(s)}t}+$	
		$(1-\cos\phi_s)e^{-\Gamma^s_Ht}+$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
2	$ A_{\parallel}(t) ^2$		$(1 + \cos^2 \theta_1) \sin^2 \theta_2 - \sin^2 \theta_1 \sin^2 \theta_2 \cos 2\chi$
	$\frac{1}{2} A_{\parallel}(0) ^2$	$(1+\cos\phi_s)e^{-\Gamma_L^{(s)}t}+$	
	A	$(1-\cos\phi_s)e^{-\Gamma_H^st}+$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
3	$ A_{\perp}(t) ^2$		$(1+\cos^2 heta_1)\sin^2 heta_2+\sin^2 heta_1\sin^2 heta_2\cos2\chi$
	$\frac{1}{2} A_{\perp}(0) ^2$	$(1-\cos\phi_s)e^{-\Gamma_L^{(s)}t}+$	
	21 - 17	$(1+\cos\phi_s)e^{-\Gamma_H^st}-$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
4	$\Re\{A_0^*(t)A_{\parallel}(t)\}$		$2\sin^2 heta_1\sin^2 heta_2\sin 2\chi$
	$\frac{1}{2} A_0(0) A_1(0)\cos(\delta_2-\delta_1) $	$(1+\cos\phi_s)e^{-\Gamma_L^s(t)}+$	
	-	$(1-\cos\phi_s)e^{-\Gamma_H^{(s)}t}+$	
		$2e^{-\Gamma_s t}\sin(\Delta M_s t)\sin\phi_s$	
5	$\Im\{A^*_{\parallel}(t)A_{\perp}(t)\}$		$-\sqrt{2}\sin 2\theta_1\sin 2\theta_2\cos \chi$
	$ A_{\parallel}(0) A_{\perp}(0)$	$e^{-\Gamma_s t} \{\sin \delta_1 \cos(\Delta M_s t) -$	
		$\cos \delta_1 \sin(\Delta M_s t) \cos \phi_s \} -$	
		$\frac{1}{2}\left(e^{-\Gamma_H^{(s)}t}-e^{-\Gamma_L^{(s)}t} ight)\cos\delta_1\sin\phi_s$	
6	$\Im\{A_0^*(t)A_\perp(t)\}$		$\sqrt{2}\sin 2\theta_1\sin 2\theta_2\sin \chi$
	$ A_0(0) A_{\perp}(0)$	$e^{-\Gamma_s t} \{\sin \delta_2 \cos(\Delta M_s t) -$	
		$\cos \delta_2 \sin(\Delta M_s t) \cos \phi_s \} -$	
		$\frac{1}{2}\left(e^{-\Gamma_{H}^{(s)}t}-e^{-\Gamma_{L}^{(s)}t} ight)\cos\delta_{2}\sin\phi_{s}$	

+ h.c.

Maximum likelihood fit for $B_s \rightarrow J/\psi \phi$

$$L = \prod_{i=1}^{N} \int_{0}^{\infty} \frac{\left(\varepsilon_{tag}^{1} \varepsilon_{rec}^{1} W^{+}(t_{i}, \Omega) + \varepsilon_{tag}^{2} \varepsilon_{rec}^{2} W^{-}(t_{i}, \Omega) + b e^{-\Gamma_{0} t_{i}}\right) \varrho(t-t_{i}) dt}{\int_{t_{min}}^{\infty} \left(\int_{0}^{\infty} \left(\varepsilon_{tag}^{1} \varepsilon_{rec}^{1} W^{+}(t_{i}, \Omega) + \varepsilon_{tag}^{2} \varepsilon_{rec}^{2} W^{-}(t_{i}, \Omega) + b e^{-\Gamma_{0} t_{i}}\right) \varrho(t'-t) dt\right) dt'}$$

