The Channel WH, H-> bb at Large Transverse Momenta in ATLAS

G. Piacquadio, <u>Christian Weiser</u>
University of Freiburg

3rd Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

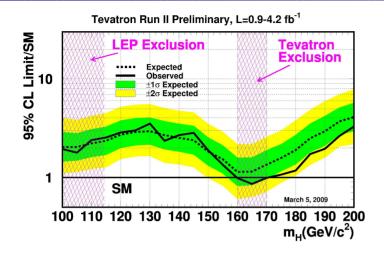
DESY-HH
12 November 2009

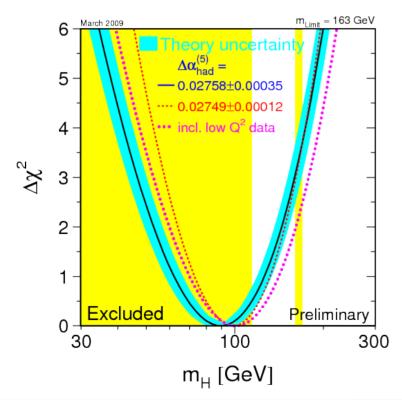
Content

- Introduction The SM Higgs Boson at low masses
- WH at high transverse momenta:

Topology

Jet Clustering


B-Tagging


Results (+ ZH)

Summary

ATLAS Note: ATL-PHYS-PUB-2009-088

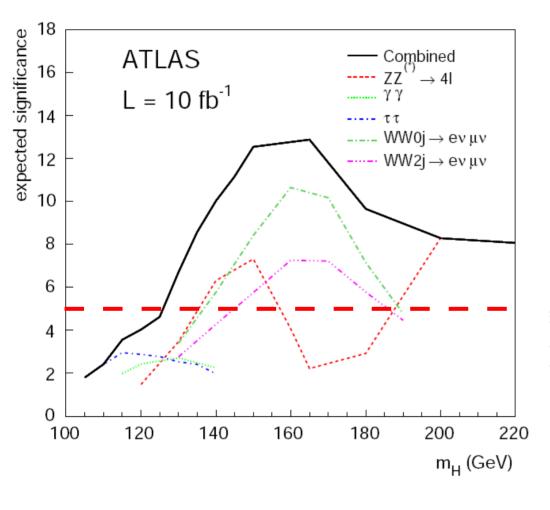
What do we already know?

Direct searches at LEP

$$M_{H} > 114.4 \text{ GeV/c}^2 (95\% \text{ CL})$$

Direct searches at the TEVATRON

Exclude 160 GeV/
$$c^2$$
 < M_H < 170 GeV/ c^2 (95% CL)

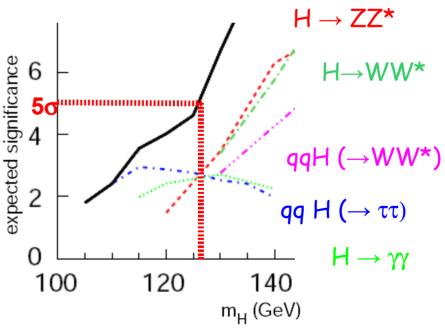

• electroweak precision measurements

$$M_H$$
 < 163 GeV/c² (95% CL)
(191 GeV/c² incl. LEP Limit)

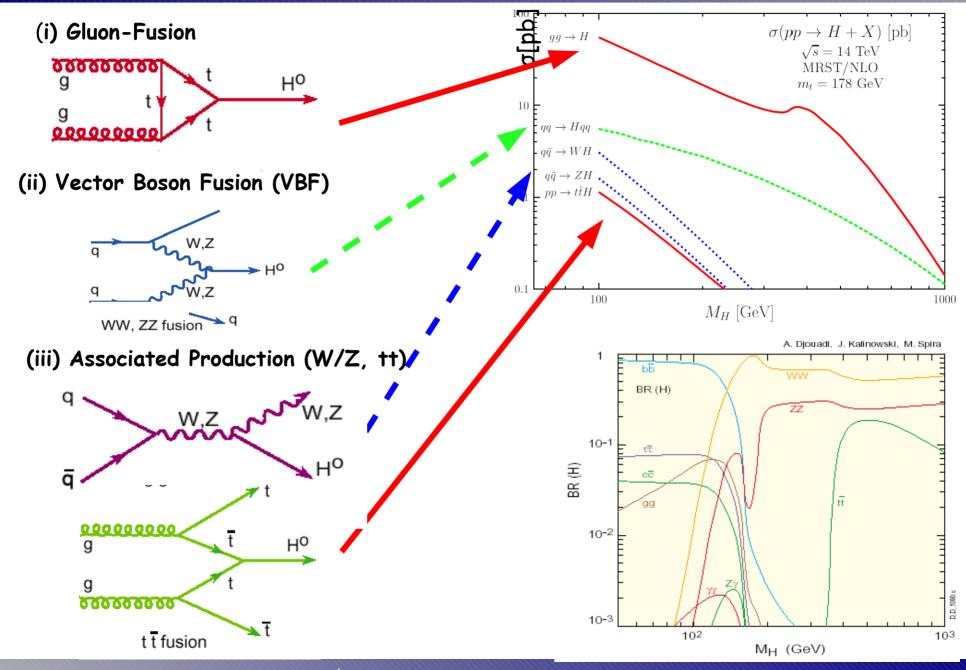
If we believe in the SM and these measurements:
Light Higgs boson preferred

Low Mass Higgs Boson

Discovery Potential from ATLAS CSC book



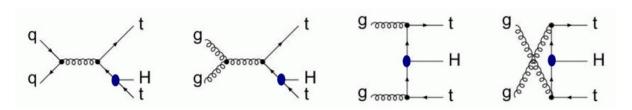
Low masses close to LEP limit


$$H \rightarrow \gamma \gamma$$

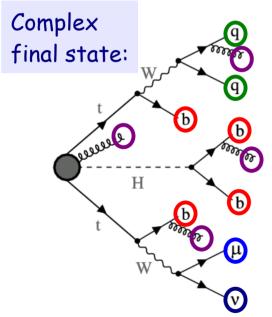
VBF $H \rightarrow \tau \tau$

Challenging!

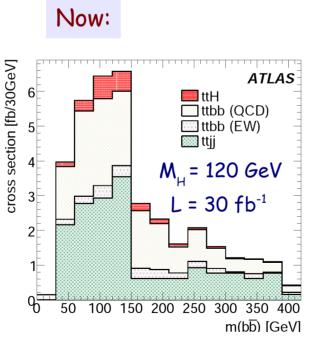
- Additional information welcome!
- look for H-> bb decay

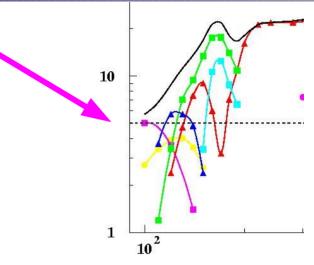


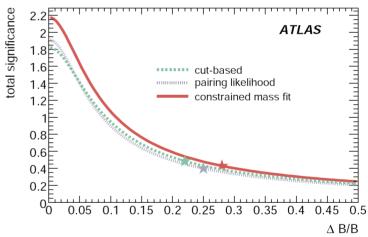
Higgs Boson Production & Decay



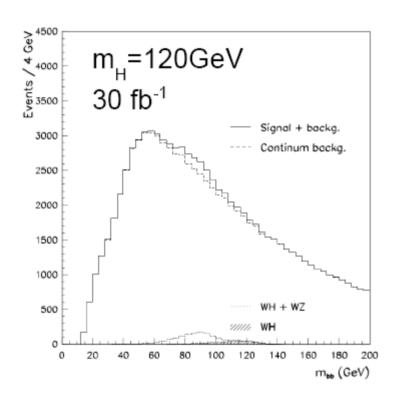
What about ttH, $H \rightarrow bb$?

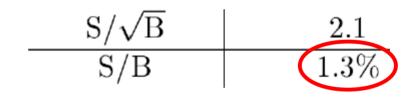

a promising search channel some years ago:




Access to top-Higgs Yukawa coupling!

Main Backgrounds: ttbb, ttjj




- Need extremely precise background normalization!
- Has to come from data!

→ ttH has disappeared from latest sensitivity plots!

The Channel WH, H->bb

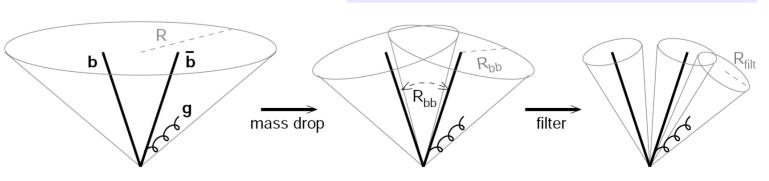
History:

Very difficult because of low signal to background ratio

-> not considered as serious search channel at the LHC (but: main search channel for low masses at the TEVATRON!)

WH

Follow idea of J.Butterworth et al. [PRL 100:242001,2008]:

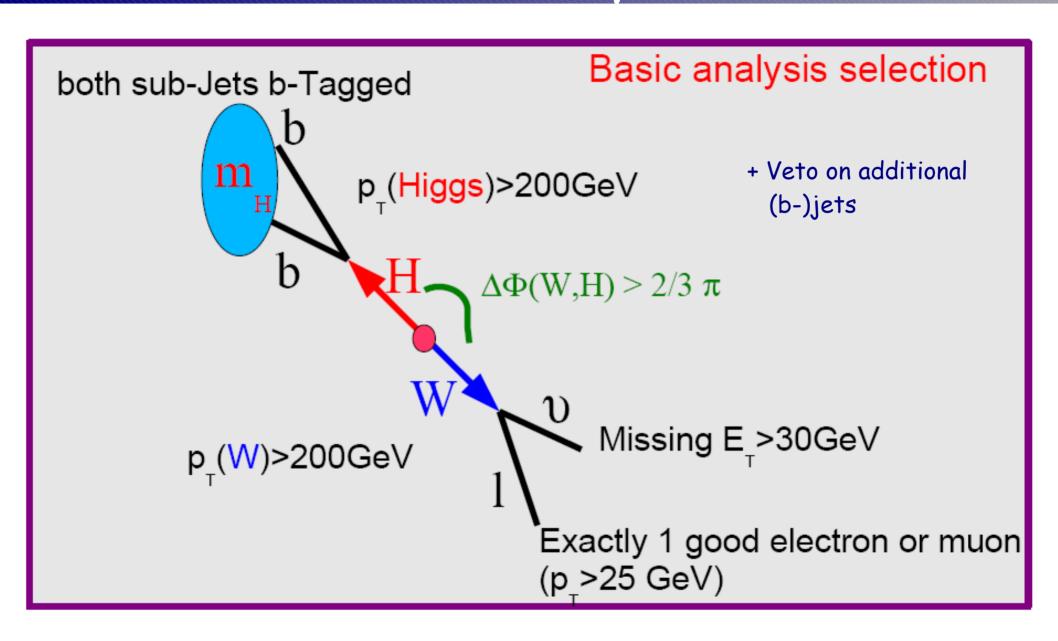

Select events in which H and W bosons Have large transverse momenta: p_{τ} > 200 GeV (\approx 5% of total x-sect.)

- -> b quarks in one "fat" jet
- + strong reduction of backgrounds (e.g. tt)
- + acceptance (more central in detector)
- + good kinematical range for lepton identification and B-Tagging

"mono"-Jet m b H

> Backgrounds considered: tt, WZ, W+jets, single top Wt

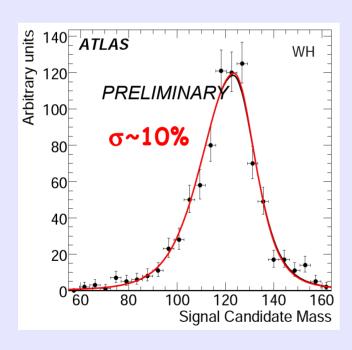
Analysis of jet (sub)structure:


MC, Samples, Simulation

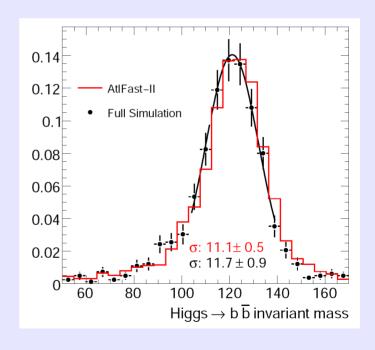
- For all processes: LO Monte Carlo (HERWIG, AcerMC + PYTHIA for Wt) and LO cross sections
- >10M simulated events needed
- Fast detector simulation ATLFAST-II used for the simulation of all samples:
 - Full simulation of the Inner Detector + MuonSystem (crucial to reproduce correctly b-tagging performance)
 - FastCaloSim for calorimeter response (full granularity needed to reproduce subjet clustering correctly)
- No Pile-Up simulation included (yet).

WH, H-> bb

- Validation of AtlFast-II:
 - Cross checks performed to test ability of AtlFast-II to reproduce detailed subjet clustering structure in boosted $H \rightarrow bb$ (using WH signal Monte Carlo). (+ extensive validation done by fast simulation team)

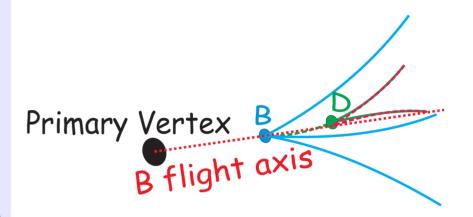

WH: Analysis

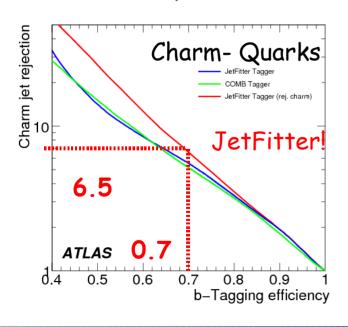
Mass Reconstruction

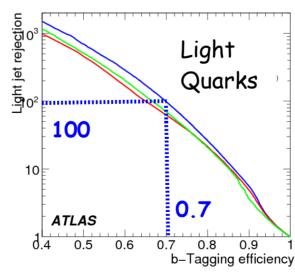

B-jet energy calibration:

- · Add muons from semileptonic b-decay (no correction for neutrino)
- Dedicated p_{τ} dependent calibration

WH, H-> bb

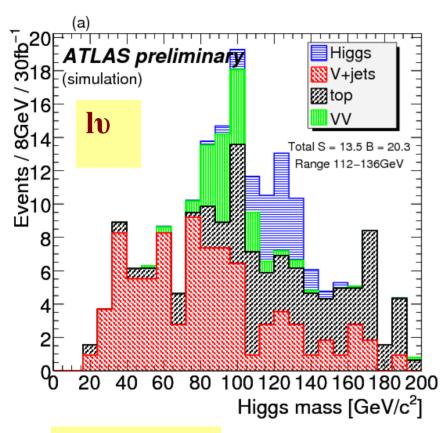

Comparison full vs. fast simulation: Apart from small shift in the energy scale, subjet structure well reproduced!


B-Tagging


Apply JetFitter algorithm:

- -b and c vertices lie approximately on same line of flight
- -allows for full fit of complete decay chain (Kalman filter implementation)
- -topologies accessible that are missed by "classical" secondary vertex finding algorithms

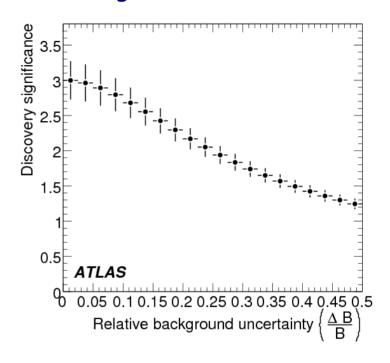
JetFitter performance on filtered subjets

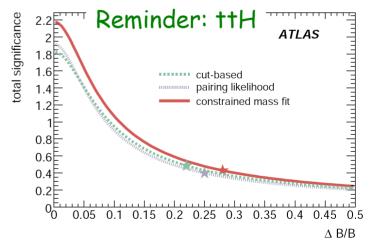

Dominant background from tt:

1 real b jet +

1 c jet from W decay

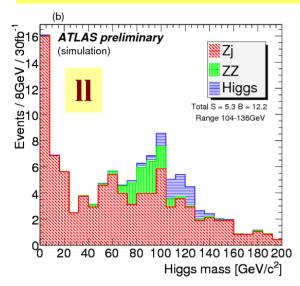
→ c rejection important!

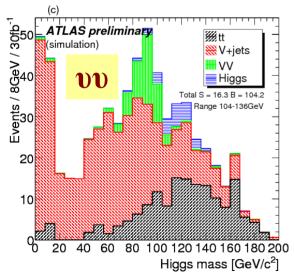

WH: Results



$$M_{_{\rm H}}$$
 = 120 GeV

$$L^{int.} = 30 \, fb^{-1} : \frac{S}{\sqrt{B}} = 3.0 \pm 0.3$$


Background uncertainties:



ZH and Combination

ZH, with Z->II oder Z->vv (performed by A. Davison, UCL)

Channel	s_i	t_i	w_i	z_i	S/\sqrt{B}
$llb\overline{b}$	5.34	0.98	0.0	11.2	1.5
$l\nu b\overline{b}$	13.5	7.02	12.5	0.78	3.0
$\nu\nu b\overline{b}$	16.3	45.2	27.4	31.6	1.6
Combined					3.7

σ_t	σ_w	σ_z	Significance		
Perfect	Perfect	Perfect	3.7		
5%	5%	5%	3.5		
10%	10%	10%	3.2		
15%	15%	15%	3.0		
20%	20%	20%	2.8		
30%	30%	30%	2.5		
50%	50%	50%	2.2		

Combined:

$$\frac{S}{\sqrt{B}} = 3.7$$

- 5/B much better than for ttH
- Different backgrounds for different channels
- Still good sensitivity including systematics (e.g. S/JB = 3.0 for 15% uncertainty on all backgrounds)

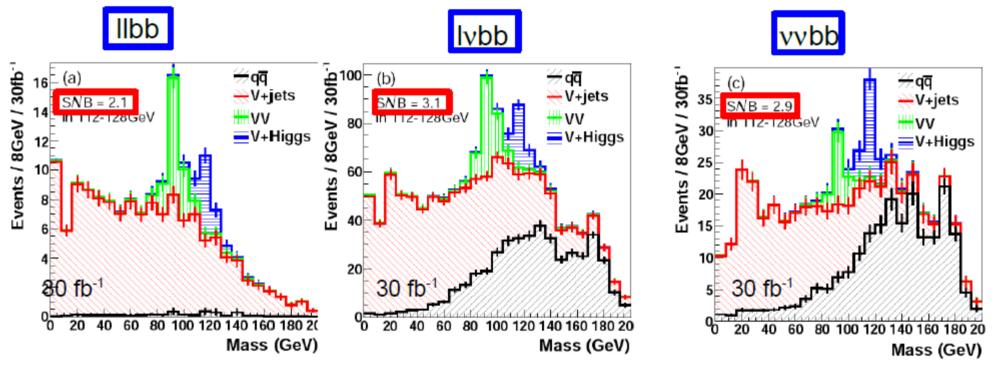
Conclusions

• New hope for the decay mode $H \rightarrow bb$ in the associated production channel WH (and ZH)

- Important for:
 - Confirmation of discovery in other channels
 - Access to b coupling
- · Outlook:
 - Fit based approach based on data control samples
 - + full estimate of systematic uncertainties

BACKUP

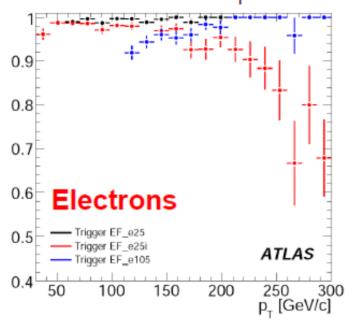
WH Cut Flow

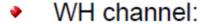

L=30 fb⁻¹

	WH(120)	WZ	$t\bar{t}(p_T^{min})$	Wt	W+jets
After filter cuts	1252.8 ± 7.8	9331	1609356	169519	2433885
1 Higgs candidate	569.7 ± 3.0	3509.7 ± 8.0	806175	69375	562030
filtered $p_T > 200 \text{ GeV}$	512.7 ± 3.2	3108 ± 10	709271	60241	413406
Missing $E_T > 30 \text{ GeV}$	362.4 ± 3.2	2183 ± 13	552284	46779	318400
$p_T(W) > 200 \text{ GeV}$	171.0 ± 2.6	1216 ± 12	137946	18524	206331
$p_T(e/\mu) > 30 \text{ GeV}$	145.6 ± 2.4	996 ± 11	115053	15724	178004
$p_T(additional \mu) < 10 \text{ GeV}$	144.6 ± 2.4	942 ± 11	106836	14992	177542
$p_T(additional\ e) < 10\ GeV$	142.9 ± 2.4	885 ± 11	97305	13881	174941
$\Delta \phi(W,H) \rightarrow \frac{2}{3} \pi$	142.2 ± 2.4	841 ± 11	84773	12999	167704
no additional <i>b</i> -jets $p_T > 15 \text{ GeV}$	130.6 ± 2.3	790 ± 10	30605	7805	160608
add. jets on W side $p_T < 60 \text{ GeV}$	115.7 ± 2.2	637.2 ± 9.5	19422	5870	121437
add. jets on H side $p_T < 60 \text{ GeV}$	102.7 ± 2.1	525.6 ± 8.8	13841	4370	94055
one subjet b -tagged	91.4 ± 2.0	126.1 ± 4.5	8638	2421	6964
both subjets b -tagged	45.6 ± 1.4	43.7 ± 2.7	576	161.4 ± 7.0	266
loose fit cuts	45.4 ± 1.4	43.0 ± 2.7	565	156.3 ± 6.9	257
	WH(120)	WZ	$t\bar{t}(p_T^{min})$	Wt	W+jets
add. jets on W side $p_T < 20 \text{ GeV}$	83.2 ± 1.9	461.3 ± 8.3	7227	3343	86087
add. jets on H side $p_T < 20 \text{ GeV}$	55.8 ± 1.6	275.6 ± 6.6	1895	1142	48229
one subjet b -tagged	46.4 ± 1.5	49.8 ± 2.9	986	498 ± 12	1825
both subjets b -tagged	19.51 ± 0.96	16.5 ± 1.7	38.9 ± 4.9	18.2 ± 2.4	87.3 ± 9.0
112 GeV < mass(H) < 136 GeV	13.25 ± 0.79	1.18 ± 0.45	5.6 ± 1.9	4.2 ± 1.1	8.3 ± 2.8

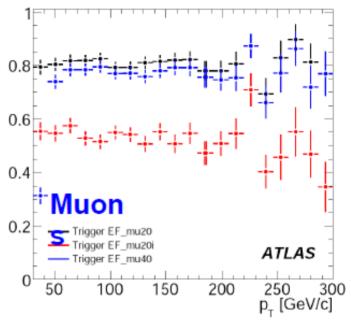
Result of hadron level study

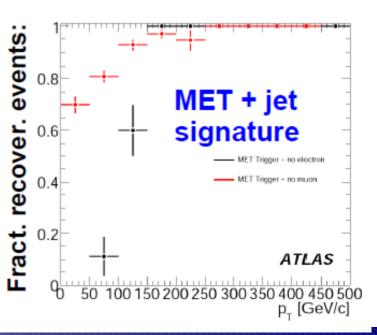
[J. Butterworth, A. Davison, G. Salam, M. Rubin, PRL 100:242001,2008]


Performed for three final states:



- Hadron level result:
 - → combining the three channels, with 30 fb⁻¹ a significance above 4 should be feasible.
- Most crucial experimental issues:
 - (1) realistic estimation of di-b quark invariant mass resolution
 - (2) it is assumed b-tagging works well on subjets. Does it really work?


Trigger efficiency (WH)


Mostly trigger on high p₊ lepton from W boson:

- Use combination of: mu20i+mu40+e25i+e105+J80_xe70
- Muons outside L1 Trigger acceptance provide large MET: recover these events by MET + jet trigger!
- Efficiency w.r.t. Offline: ~99.5 %
- Trigger inefficiency (0.5 %) is negligible...

