Search for GMSB SUSY with ATLAS

Mark Terwort & Dörthe Ludwig

3rd Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

November $11^{\rm th}$ 2009

< □ > < 同 >

Outline

Outline

- short description of GMSB
- GMSB with τ final states (GMSB6)
 - selection for 10 TeV
 - parameter scan
 - invariant mass
- GMSB with γ final states (GMSB1-3)
 - mass measurements
 - non-pointing photons
 - parameter determination

GMSB searches with ATLAS

GMSB

- Gauge Mediated Supersymmetry Breaking
- breaking: coupling of messenger particles
- messenger particles give mass to the super partners of the SM particles through gauge interaction
- assumption: R-parity conservation

Parameters

- $\bullet~\Lambda$ SUSY breaking mass scale; determines predominantly masses of SUSY particle
- M_{mes} mass of messenger particles
- $\bullet~N_5$ number of messenger fields, masses of gauginos and sleptons/ squarks scale differently in N_5
 - N₅ = 1 NLSP: $\tilde{\chi}_1^0, \tilde{\tau}_1$ (GMSB1-3) N₅ = 3 NLSP: $\tilde{e}_{R}, \tilde{\mu}_{R}, \tilde{\tau}_1$ (GMSB6)
 - NLSP also depends on ${\rm tan}\beta$
- $\bullet~\tan\!\beta$ ratio of vacuum expectation values of the two Higgs fields
- ${\rm sgn}\mu$ sign of the Higgsino mass term
- $\bullet~{\rm C}_{\rm grav}$ scale factor for the gravitino mass; determines NLSP lifetime

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

GMSB with au final states (D. Ludwig)

< □ > < 同 >

→ Ξ →

æ

Selection Pre

Preselection

Preselection

- jets: N_{jets} $\geq 2\,,\, p_{T,jet1} > 100\,{\rm GeV},\, p_{T,jet2} > 50\,{\rm GeV},$ overlap removal w/ τ
- τ : N_{τ} \geq 1, p_{T, τ 1} > 20 GeV, reco. of hadr. τ -decays, overlap removal w/ e
- $\not{\!\!E}_{\rm T} > 60 \, {\rm GeV}$
- $|\Delta \phi(\not\!\!E_{\mathrm{T}}, \mathbf{p}_{\mathrm{T,jet1}})| > 0.2$
- dominant residual BG: t\bar{t}, W $\rightarrow \tau \nu,$ assumed uncertainty of 50%

Significance I

Two-dimensional Optimization for GMSB6

• significance definition

$$\begin{array}{lll} Z_n & = & \sqrt{2}\,\mathrm{erf}^{-1}(1-2p) \\ p & = & A\int_0^\infty db\,G(b;N_b;\delta N_b)\sum_{i=N_{\mathrm{Data}}}^\infty \frac{e^{-b}b^i}{i!} \end{array}$$

•
$$N_{\text{Data}} = S + BG, N_b = BG, \delta N_b = 50\% + \delta_{MC}$$

- erf⁻¹: inverse error function
- p: probability that BG b fluctuates to number of measured events N_{Data}
- G(b; N_b; δ N_b): gaussian distribution of MC BG
- A: normalization factor

• maximum for
$$N_{\tau} \ge 2$$
 and $\not \!\!\! E_T > 280 \, \mathrm{GeV}$
 \Rightarrow final selection

• $Z_n(200 pb^{-1}) = 5.7$

 $N_{\tau}(\not\!\!E_T > 280 \, \mathrm{GeV})$

6 / 20

Parameter Scan

Scan

Parameter Scan

- cross section
 - decreases with Λ due to increasing SUSY masses
 - dependence on $\mathrm{tan}\beta$ small

- number of selected events $(200 \,\mathrm{pb}^{-1})$
 - decrease with Λ due to decreasing cross section

∃ ► < ∃ ►</p>

• increase with $\tan\beta$ depending on NLSP

Integrated Luminosity needed for 5σ Discovery

- $\bullet\,$ discovery potential high for small Λ and bigger for higher ${\rm tan}\beta$
- discovery with first data
- $200 \,\mathrm{pb}^{-1}$: $\Lambda \leq 40 \,\mathrm{TeV}$
- $1 \, \mathrm{fb}^{-1}$: $\Lambda \le 45 \, \mathrm{TeV}$
- further discovery limited by MC statistic

< ロ > < 同 > < 回 > < 回 >

Selection for Invariant Mass Study

• $\mathcal{L} = 8 \, \mathrm{fb}^{-1}$

- standard SUSY preselection (cf. S. 6)
- final selection

• signal events enhanced by a factor of 1.5 wrt. selection for discovery

Invariant Mass

$$\begin{split} \mathbf{M}_{\tau\tau,\max}^2 &= \frac{(\mathbf{m}_{\mathbf{X}}^2 - \mathbf{m}_{\tilde{\tau}_1}^2)(\mathbf{m}_{\tilde{\tau}_1}^2 - \mathbf{m}_{\tilde{G}}^2}{\mathbf{m}_{\tilde{\tau}_1}^2} \\ \mathbf{M}_{\mathbf{\sigma}_{\tau},\max}^2 &= \mathbf{m}_{\mathbf{X}}^2 - \mathbf{m}_{\tilde{\tau}_1}^2 \\ \mathbf{M}_{\tau\tau,\max}^2 &= \sqrt{\mathbf{m}_{\tilde{\chi}_1^0}^2 - \mathbf{m}_{\tilde{\tau}_1}^2} \\ &= 120.6 \, \mathrm{GeV} \\ & \tilde{\chi}_1^0 & \tilde{\tau}_1 \\ & \tilde{\chi}_1^0 & \tilde{\tau}_1 \\ \end{split}$$

Determination of the invariant mass endpoint

- invariant mass endpoint cannot be measured directly
- measure inflection point and calibrate
- calibration curve determined through mSUGRA ATLFAST samples, $\tilde{\chi}_1^0$ contribution only (Zendler et al., arXiv:0901.0512)
- reconstruction works even with $\widetilde{\chi}^0_2$ and $\widetilde{\ell}_R$ contributions
- fit of reconstructed invariant mass (OS-SS) including background

$$M_{\tau\tau, max} = 135.0 \pm 4.3^{(\text{stat.})}_{-15.8}^{+17.9(\text{syst.})} \text{GeV}$$

• syst. error: BG, fit range, calibration, contribution from $\widetilde{\chi}_2^0$ and $\widetilde{\ell}_R$

GMSB with γ final states (M.Terwort)

æ

<ロ> <問> <問> < 回> < 回>

Discovery Potential for GMSB1-like Scenarios

- NLSP: $\widetilde{\chi}_1^0$
- $\widetilde{\chi}_1^0 \Rightarrow \gamma \widetilde{\mathbf{G}}$
- $C_{grav} = 1 \Rightarrow prompt photons$
- $C_{grav} > 1 \Rightarrow \widetilde{\chi}_1^0$ finite lifetime, non-pointing photons

- $\not\!\!E_T > 60 \,\mathrm{GeV}$
- jets: $N_{jets} \ge 4$, $p_{T,jet1} > 100 \text{ GeV}$, $p_{T,jet2/3/4} > 50 \text{ GeV}$
- $|\Delta \phi(E_T, p_{T, jet 1/2/3})| > 0.2$
- $\gamma: N_{\gamma} \ge 2$

Discoverypotential (14 TeV)

 $m_{\tilde{q}}$ [GeV]

Mass measurements

SUSY masses can be determined via invariant mass distributions.

- Benchmark scenario GMSB2 (decay length: $\simeq 1$ m)
- Event selection:
 - similar to discovery study
 - $N_{jets} \ge 2, N_{\ell} \ge 2$
- select OSSF lepton pairs
- subtract OSOF BG
- fit linear functions smeared with Gaussian \Rightarrow measure kinematic endpoints of $M_{\ell\ell}$, $M_{\ell\gamma}$ und $M_{\ell\ell\gamma}$
- fitted masses:

 $\begin{array}{l} m_{\widetilde{\chi}^0_1} = 114.0 \pm 9.5 \, {\rm GeV}(118.8 \, {\rm GeV}) \\ m_{\widetilde{\ell}} = 154.1 \pm 8.0 \, {\rm GeV}(160.5 \, {\rm GeV}) \\ m_{\widetilde{\chi}^0_2} = 222.5 \pm 6.3 \, {\rm GeV}(225.5 \, {\rm GeV}) \end{array}$

Non-pointing photons

- NLSP can have finite lifetime
- non-pointing photons in final state
- standard selection based on shower variables inefficient

Problems:

- efficient separation of signal and BG
- determination of NLSP lifetime boost of $\tilde{\chi}_1^0$ unknown, reconstruction of ϕ -direction impossible

Idea:

- use calorimeter timing (resolution: a few 100ps) and projection of photon path on z-axis as additional discriminating variables
- fit distributions to separate signal from background
- measure $\tilde{\chi}_1^0$ lifetime with calibration curve

Cluster timing and combined fit

- Benchmark scenario GMSB3 (decay length: $\simeq 3m$)
- event selection similar to discovery study
- dominant SM background: $t\bar{t}$
- signal: Landau distribution, BG: Gauss

- measure resolution with $Z \rightarrow ee$ data
- use parameters to model background \Rightarrow reduction of free parameters
- fit combined model

Idea:

- use width for calibration curve
 - \Rightarrow simulate different decay lengths

Non-pointing photons

Calibration and results

Fit of calibration curve

- saturation effect due to decreasing ID-efficiency and finite detector size
 ⇒ statistical error increases significantly with lifetime
- dependence on other GMSB parameters ≈ stat. fluctuations
- only small dependence on BG scaling

Results

- systematic uncertainties:
 - limited MC statistics
 - BG parametrization with $Z{\rightarrow}ee$
- the larger the lifetime, the larger the uncertainty due to saturation effect
- measurement of $\widetilde{\chi}_1^0$ lifetime possible with good precision

Example fit values

I I I I I I I I I I I I I I I I I I I	
theo.	measurement
$C_{\rm grav}$	$C_{grav} \pm stat. \pm sys.$
10	$10.6\pm^{0.2}_{0.2}\pm^{0.2}_{0.2}$
20	$19.9\pm^{0.6}_{0.6}\pm^{0.5}_{0.4}$
30	$32.9\pm^{1.6}_{1.5}\pm^{1.2}_{1.1}$
40	$44.2\pm^{3.4}_{3.0}\pm^{2.6}_{2.2}$
55	$53.6\pm_{6.2}^{8.2}\pm_{3.5}^{4.7}$
70	$57.5\pm^{13.8}_{8.9}\pm^{5.9}_{4.3}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parameter determination

- Can the theory parameters be determined with the measured observables?
 ⇒ perform a fit of the model to the neutralino lifetime and invariant mass endpoints.
- use fitting package fittino for the fit and spectrum calculator SPheno for theory predictions

Par.	Description
Λ	enters masses linearly
M _{mes}	enters masses logarithmically
	lifetime with sqrt
N ₅	fixed to 1 due to γ final states
$\operatorname{sgn}(\mu)$	fixed to 1 due to SM fit
$\tan\!\beta$	does not enter directly
	the measured observables
$C_{\rm grav}$	enters lifetime with sqrt

Expectation:

- Λ can be measured well
- M_{mes} and C_{grav} can only be measured as a product
- $\tan\beta$ cannot be measured

イロン 不同 とくほう イロン

Parameter determination

- fit a GMSB model to "real" measurements with realistic uncertainties
- choose GMSB2 due to better lifetime measurement

$$\Rightarrow \Lambda$$
 and $M_{mes} \cdot C_{grav}$ determined

$$\Rightarrow$$
 breaking scale $F = \Lambda \cdot M_{mes} \cdot C_{grav}$

1500

F=A× C_{orav}× M_{mess} [GeV²]

 $True = 1.35 \cdot 10^{12}$

 $Fit = (1.35 \pm 0.09) \cdot 10^{12}$

2000

1000

Number of toy fits

100

50

ATLAS

work in progress

Conclusion

GMSB6 with au final states:

- $\bullet\,$ study of discovery potential with $\sqrt{s}=10\,{\rm TeV}$ in GMSB6
 - N_{τ} and E_T allow efficient separation of signal and background
 - discovery possible with first data
 - reasonable range of parameter space can be covered
- determination of invariant mass endpoint possible

GMSB1-3 with γ final states:

- GMSB can provide non-pointing photons in calorimeter
 - use ECAL timing to measure NLSP lifetime
- use kinematic endpoints to measure masses
- fit of model partially possible
 - determination of breaking scale

イロト 不得 トイヨト イヨト 二日

Backup NLSP

NLSP in GMSB

- LSP (Lightest Supersymmetric Particle)
 - nearly massless, neutral Gravitino $m(\tilde{G}) = \mathcal{O}(eV)$
- NLSP (Next-to-Lightest Supersymmetric Particle)
 - determines phenomenology

Backup NLSP

Fast Simulation Samples

• 380 points for 10 TeV $\leq \Lambda \leq$ 100 TeV and 2 $\leq \tan\beta \leq$ 35

•
$$M_{\rm mes} = 250 \, {\rm TeV}, N_5 = 3 \, , C_{\rm grav} = 1$$

• 10000 events per point

