Top-quark pair-production cross-section measurement using early CMS data at 10 TeV

Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie (KIT)

Helmholtz Allianz Workshop November, 12th 2009

PHYSICS AT THE TERASC

Jasmin.Gruschke@cern.ch (KA)

Early top-quark cross-section measurement

Introduction

Introduction

Theoretical prediction ($\sqrt{s} = 10$ TeV):

 $\sigma(t\bar{t}) = 414 \text{pb} \pm 40 (\text{scale}) \pm 20 (\text{PDF})$

Cacciari et al., JHEP 09 (2008) 127

Signatures:

- 6 Jets (2 b-Jets)
- Lepton, 4 Jets (2 b-Jets), ∉_T
- Two opp. charged leptons, 2 b-Jets, ∉_T

Objective:

• Robust analyses of first/early CMS data at a center-of-mass energy of 10 TeV

Prospects for the first measurements of the top-quark pair-production cross-section in the muon+jets and electron+jets channels within 20/pb accumulated CMS data at $\sqrt{s} = 10$ TeV.

Summary of approved analyses:

- CMS PAS TOP-09-003: http://cms-physics.web.cern.ch/cms-physics/public/TOP-09-003-pas.pdf
- CMS PAS TOP-09-004:

http://cms-physics.web.cern.ch/cms-physics/public/TOP-09-004-pas.pdf

(with significant contributions from Karlsruhe by Th. Chwalek, J. Gruschke, Th. Müller, M. Renz and F. P. Schilling)

Event selection - semileptonic $t\bar{t}$ channel

- Trigger: High level single electron/muon trigger
- Lepton: Exactly one isolated lepton
 - Muon: combined information from tracker and muon system; p_T >20 GeV/c, $|\eta|$ <2.1 and certain quality criteria
 - Electron: combined information from tracker and ECAL;
 E_T >30 GeV, |η| <2.5 and certain quality criteria
- Jets: \geq 4 jets with p_T >30 GeV/c, $|\eta|$ <2.4 (SisCone; R=0.5)

Data-driven estimation of QCD background

ABCD-Method:

- Divide into 4 phase-space regions (3 dominated by QCD)
- Estimate QCD contribution in the signal region via:

$$N_A = N_B \cdot \frac{N_C}{N_D}$$

Rellso Extrapolation Method:

- Side-band region fit to an isolation distribution (Rellso includes tracker and calorimeter information)
- Integral of extrapolated function as estimate for the QCD contribution

Expected precision of both methods in both channels about 50%

Data-driven estimation of W+jets background

Utilize charge asymmetry:

- Measure the number-difference of leptons to anti-leptons in candidate events
- Estimate the number of charge-asymmetric background events (e.g. W+jets) via:

$$\left(\mathbf{N}^{+}+\mathbf{N}^{-}\right)_{\mathrm{data}}=\mathrm{R}_{\pm}\cdot\left(\mathbf{N}^{+}-\mathbf{N}^{-}\right)_{\mathrm{data}}$$

$$R_{\pm} = \frac{N_{W^+} + N_{W^-}}{N_{W^+} - N_{W^-}} = \frac{A_+ \sigma_{W^+} + A_- \sigma_{W^-}}{A_+ \sigma_{W^+} - A_- \sigma_{W^-}}$$

Jet multiplicity with prediction for events leading to charge asymmetry (ECA) scaled to 100/pb

Expected precision of the estimation is 30% within 100/pb

Determination of the $t\bar{t}$ cross section

• From experimental point of view, the cross-section is given by:

$$\sigma(t\bar{t}) = \frac{N_{t\bar{t}}}{A\cdot\varepsilon\cdot\mathcal{L}}$$

• Extraction of $N_{t\bar{t}}$ via a template fit to a discriminating variable utilizing a standard binned likelihood procedure.

Invariant mass of three jets with the highest vectorial-summed $p_{\rm T}$:

Comparison of shapes:

500

Results

- Estimation of sensitivity and systematic uncertainties employing ensemble test (i.e. sets of 5k pseudo experiments)
- Total uncertainty is obtained by quadratic sum of individual uncertainties; luminosity is treated separately

Source	Uncertainty [%]		
	Fit to $\eta(\mu)$	Fit to M3	Fit to M3'
Statistical Uncertainty (20 pb ⁻¹)	17.7	16.3	11.5
Jet Energy Scale	16.7	15.1	19
tł MC Generator	1.9	14.9	14
tī ISR/FSR	3.3	7.7	2
W+jets Factorization scale	4.4	4.7	4
W+jets Matching threshold	5.5	2.8	4
Single Top Shape	0.1	0.8	1
PDF Uncertainty	5.0	5.0	5.0
Total Systematic Error	19.2	23.8	25.0
Luminosity Error	10.0	10.0	10.0

Muon+jets channel:

Electron+jets channel:

	Relative Systematic Uncertainty
Jet Energy Scale	15%
tł MC Generator	10%
tt ISR/FSR uncertainty	3%
W+jets MC Factorization Scale	1%
W+jets MC Matching threshold	5%
Shape uncertainty of Single Top	1%
Shape uncertainty of QCD	2%
PDF uncertainty	5%
Total	20%

Stat. uncertainty: 12-18% System. uncertainty: 20-25% Stat. uncertainty: 23% System. uncertainty: 20%

Expectations for observation of top-quark pair-production in the dilepton final state with the early CMS data at $\sqrt{s} = 10 \text{ TeV}$

Summary of (focus on $t\bar{t} \rightarrow II+jets$ in 10/pb using calorimeter jets):

 PAS TOP-09-002: http://cms-physics.web.cern.ch/cmsphysics/public/TOP-09-002-pas.pdf

Event selection - dileptonic $t\bar{t}$ channel

• Final states:
$$e^+e^-$$
, $\mu^+\mu^-$ and $e^\pm\mu^\mp$

- Trigger: High level single electron or single muon trigger
- Lepton: At least two isolated leptons with opposite-sign charge,
 - p_T >20 GeV/c, $|\eta|$ <2.4 and certain quality criteria
 - Z-boson veto (ee & $\mu\mu$ channel): reject events with $|M_{II} M_Z| < 15 \text{ GeV/c}^2$
- Jets: \geq 2 jets with p_T >30 GeV/c, $|\eta|$ <2.4 (SisCone; R=0.5)
- MET: $\not\!\!E_T > 30 \text{ GeV}$ (ee & $\mu\mu$ channel); $\not\!\!E_T > 20 \text{ GeV}$ (e μ channel)

Data sample	e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
$t\bar{t} \rightarrow \ell\ell$	11.6 ± 0.2	13.2 ± 0.2	35.6 ± 0.4
other <i>tt</i>	0.21 ± 0.03	0.04 ± 0.01	0.46 ± 0.04
Single top	0.46 ± 0.03	0.56 ± 0.03	1.40 ± 0.06
WW/WZ/ZZ	0.26 ± 0.02	0.33 ± 0.03	0.71 ± 0.05
$DY \rightarrow \tau \tau + jets$	0.3 ± 0.1	0.3 ± 0.1	0.7 ± 0.2
$DY \rightarrow ee/\mu\mu + jets$	4.1 ± 0.4	5.3 ± 0.4	0.08 ± 0.05
W + jets	0.2 ± 0.1	< 0.1	0.3 ± 0.1
QCD	< 1	< 0.4	< 0.4
Total backgrounds	5.5 ± 0.4	6.6 ± 0.4	3.7 ± 0.2
Data driven fakes	1.1 ± 0.6	0.8 ± 0.4	2.5 ± 1.2
Data driven DY	4.0 ± 1.3	5.1 ± 1.6	

Data-driven estimation of background events

Estimation of DY+jets background

• Number of events $N_{DY,in}^{data}$ within

 $|M_{\rm II}-M_{\rm Z}|$ <15 GeV/c² to estimate the number of events passing the Z-boson veto:

 $N_{\rm DY,out}^{\rm data} = R_{\rm out/in} \cdot N_{\rm DY,in}^{\rm data}$

• where ${\rm R}_{\rm out/in}$ taken from $\gamma^*/Z\text{-simulations}$

Method yields 30% systematic uncertainty.

Data-driven estimation of background events

Estimation of DY+jets background

• Number of events $N_{DY,in}^{data}$ within $|M_{II} - M_Z| < 15 \text{ GeV}/c^2$ to

estimate the number of events passing the Z-boson veto:

 $N_{\rm DY,out}^{\rm data} = R_{\rm out/in} \cdot N_{\rm DY,in}^{\rm data}$

• where ${\rm R}_{\rm out/in}$ taken from $\gamma^*/Z\text{-simulations}$

Method yields 30% systematic uncertainty.

Estimation of fake leptons

- Fakes: Misidentified jets as leptons
- "Fake Ratio" (*FR*) from e.g. multi-jet events:

$$FR = rac{FO_{ ext{pass full selection}}}{FO}$$

FO is an object with looser requirements.

• Estimation of fakes via:

$$N_{
m fake} = N_{
m l,FO} \cdot FR(1 - FR)$$

where in $N_{\rm l,FO}$ events both leptons fulfill FO requirements but only one pass the full selection.

Method yields 50% systematic uncertainty.

Results

The signal-to-noise ratio is about 4 to 1 in the combination of all channels and about 9 to 1 in the $e^{\pm}\mu^{\mp}$ channel alone

Source	e^+e^- and $\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
Statistical	25	18
Lepton ID	5	5
Lepton isolation	3	3
Jet energy scale	8	5
Theory	4	4
$DY \rightarrow ee, \mu\mu$ method	10	
Fake leptons method	4	4
Residual background	5	4
Integrated luminosity	10	10

Stat. uncertainty: 15% System. uncertainty: 10%

The analysis can be extended by (see Ref. for details):

- Using jets reconstructed by the tracker and omitting the MET requirement
- Utilize the identification of *b*-jets

Disclaimer:

The following results do not represent official material released by CMS but are results recently obtained.

Work in progress ...

Thanks to D. Dammann and D. Tornier for their slides/material!

$t\bar{t}$ dilepton activities at DESY

- Determination of $t\bar{t}$ cross section in 7 TeV and 10 TeV data in 2010
- Event selection without b-tagging
- In addition a $\mu\mu$ analysis is planned within 50/pb at 7 TeV

$t\bar{t}$ dilepton activities at DESY

- Determination of $t\bar{t}$ cross section in 7 TeV and 10 TeV data in 2010
- Event selection without b-tagging
- In addition a $\mu\mu$ analysis is planned within 50/pb at 7 TeV

Estimation of QCD and fake muon background using the wrong charge method.

$t\overline{t}$ dilepton activities in Aachen

Cross-section measurement via counting experiment within early data

- High level single electron or muon trigger
- \geq 2 opposite-sign charged isolated leptons with $p_{\rm T}$ > 20 GeV/c
- No *b*-jet identification applied

$t\overline{t}$ dilepton activities in Aachen

Cross-section measurement via counting experiment within early data

- High level single electron or muon trigger
- \geq 2 opposite-sign charged isolated leptons with $p_{\rm T}$ > 20 GeV/c
- No *b*-jet identification applied

Estimation of Drell-Yan background in data via:

$$\begin{split} N_{DY,out}^{data} = R_{out/in} \cdot N_{DY,in}^{data} \\ \text{after correction of } N_{DY,in}^{data} \text{ using } \\ \text{opposite-flavour events} \end{split}$$

Conclusion

Conclusion

• Three feasibility studies for early $t\bar{t}$ cross-section measurement

channel	$\int \mathcal{L} dt$	stat. uncertainty	system. uncertainty
e+jets	20	23 %	20 %
μ +jets	20	12-18 %	20-25 %
<i>l</i> /+jets	10	15 %	10 %

- Employ data-driven techniques for the estimation of background contributions
- Currently the analyses change for a center-of-mass energy of $\sqrt{s} = 7$ TeV
- We are ready and eager to analyze first data ... and will hopefully be able to claim the discovery of the top quark in Europe!

Backup

$t\bar{t}$ dilepton channel

