

Prof. Elsen Sven Karstensen

II. Institute of Physics Atomic and Nuclear Physics

Helmholtz Alliance

- motivation for Q-E-measurements
- principles of cavity testing
- short technical description of old and new system & motivation for digital control
- current results

Relevant Signals

Essential Part's

• Frequencybox:

3 Frequencies in Phase and in rational ratio to each other

- SIMCON DSP:
 - XilinxVirtexII
 - TigerSharkDSP
 - 10 ADCs (14 Bit) (900ns)
 - 8 DACs (16 Bit) (500ns)
 - 2 optogigalinks
 - VME interface

How it really looks

Graphical User Interface (GUI)

Summary & Preliminary Results

- automatic measurement up to 5MV/m possible
- algorithm finds correct phase, sweeps forward power and calculates every needed value

still needed to be done:

- implement algorithm for automatic frequencysearch
- correct calibration of ADC with new controllable attenuator
- get rid of the noise
- communication with DOOCS

Bibliography

•	[1]	T. Schilcher - Vector Sum Control of Pulsed Accelerating Fields
		in Lorentz Force defuned Superconducting Cavities
		(Thesis)
•	[2]	H. Padamse - RF Superconductivity for Accelerators (Book)
•	[3]	V. Ayvazyan - LLRF Systems for TTF / VUV-FEL
•	[4]	H. Weise - Neuentwicklungen in der Beschleunigertechnologie
		(held at DPG2008)
•	[5]	S. Simrock - Experience with the Control of the vector sum at the TTF
•	[6]	S. Simrock - Measurements for low level RF control systems
•	[7]	W. Jalmunza - Performance of 24 Cavity Vector Sum
		Controller with distributed Architecture
•	[8]	L. Lilje - Superconducting Radiofrequency
		Accelerating Structures (held at TAS)
		- Experimental Investigations on SC Nb Cavities at High RF
		Fields
•	[9]	J. Sekutovic - Superconducting high beta cavities
		(held at SRF 07)

IQ Vector modulation

ilr

ΪĹ

- Representation of Amplitude and Phase in State space normally in polar coordinates

 IQ means Cartesian Coordinates
- Sampling Frequency 4 x IF
- To compare values, need to rotate the IQ-Vector
- With modulating I and Q in time you control Amplitude, Phase and Frequency of Sign

Layout of LLRF Control

Vertical Test Results

