

3<sup>rd</sup> Annual workshop: Physics at the Terascale DESY, 12.11.2009 André Roth Physikalisches Institut, Universität Bonn



# Multi Bunch Feedback Systems for ELSA

- Collective beam instabilities
- Layout of feedback systems
- Feedback systems at ELSA





Electron bunches interact with the beam surroundings:

- cavities: higher order modes
- vacuum chamber: resistive wall
- other chamber discontinuities (BPMs,...)

### Problem: short- and long-range wake fields remain and act back on the beam!



### **Consequence:** coherent bunch oscillations







$$U_{\text{wake}}(\omega) = Z(\omega) I(\omega)$$
 Intensity of electron beam

Impedance and beam spectrum of accelerator

If natural damping times are too long, multi bunch oscillations cause an enlargement of beam size and finally beam loss



**Collective effects basically limit the brightness and the luminosity of accelerators** 



**Counteraction: Feedback Systems** 





### **Bunch by bunch feedback systems**

### Active damping of multi bunch oscillations



**1. Detection: broadband BMP signals** 

- 2. Signal processing: bunch by bunch filtering, digital
- 3. Correction: powerful damping of beam motion





### 1. Detection of bunch oscillations via BMP signals



Betatron oscillation: amplitude demodulation of  $\Delta$ -signal  $A(t) \sin (3 \omega_{\rm RF} t) \cdot \sin (3 \omega_{\rm RF} t) \propto A(t)$ 

Synchrotron oscillation: phase demodulation of  $\Sigma$ -signal  $\sin (3 \omega_{\rm RF} t + \varphi(t)) \cdot \sin (3 \omega_{\rm RF} t + \pi/2) \propto \varphi(t)$ 





### 2. Digital signal processing (DSP): FPGA based



- turn-by-turn measurement of each bunch (h = # bunches)
- design of h digital filter for each bunch

a) band pass filter at tune frequency

b) required for damping: phase shift of 90°

because the correction signal must be proportional to the time derivative of the bunch oscillation!





### 3. Application of correction signals by broadband kickers







### At ELSA: significant current upgrade: *I*<sub>Beam</sub> = 100 - 200 mA



## Main source of long range wakes and multibunch instabilities at ELSA:

HOMs of 2 Petra cavities without HOM damping



Numerical simulations with CST microwave and particle studio (eigenmode & wake field solver)







## Impedances of HOMs are well above multi bunch instability thresholds due to radiation damping!

#### longitudinal situation:



universität**bonn** 



# Installation of longitudinal & transverse feedback systems at ELSA

1. DSP: "industrial" FPGA solutions are available

ITech/Libera (Slovenia)













### 2. Kickers: still existing / in development

horizontal & vertical stripline kicker

# broadband longitudinal kicker cavity:





- based on DAΦNE, BESSY & DESY designs
- pill box cavity with low Q: 5.5
- center frequency: 1375 MHz





### 3. Further plans of R&D at ELSA

- Which feedback damping times are necessary and achievable for up to 200 mA at 1.2 GeV in ELSA?
- Fast energy ramp (1.2 to 2.4 GeV in 0.3 s!): synchronous phase of bunches will change!
- Beam diagnostics: Fast tune measurements during ramp
- Single bunch mode is essential:
  - Investigations of instabilities & required for feedback timing





### Conclusion

- Bunch by bunch feedback systems are essential for modern accelerators to fight against collective beam instabilities
- Feedback systems are also very powerful tools for beam diagnostics at accelerators
- The installation of feedback systems should start at ELSA in 2010 and we are happy to beat the beam with 500 MHz...



Thank you for your attention!

















### **Thresholds for long. instabilities**

$$au_{\mathrm{inst}} < au_{\mathrm{rad}}$$

#### exponential growing of coupled bunch oscillations !

**ELSA** parameter list

$$\tau_{\rm inst} = \frac{2 \, Q_{\rm S} \, E/e}{\alpha_{\rm C}} \, \frac{1}{f_{\rm CBM} \, I \, R_{\rm S}}$$

| Energy range             | 1.2 - 3.5 GeV |
|--------------------------|---------------|
| $f_{ m Rev}$             | 1.8236 MHz    |
| Bunches                  | 274           |
| PETRA-cavities           | 2             |
| $lpha_{ m C}$            | 0.063         |
| $	au_{ m rad}$ @ 1.2 GeV | 36 ms         |
| $	au_{ m rad}$ @ 3.2 GeV | 2 ms          |
|                          |               |



