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Current detection of quench location

> Quench

 Thermal breakdown

> Temperature mapping

 Use of temperature dependent 
resistors

 Common system to locate quench 
spots

 Complex assembly

 Setup has to be mounted on every 
single cavity to be tested

 Demand for simpler/faster methods
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Second Sound in He II

> Two fluid model

 'normal' liquid helium: density    

 'superfluid' helium: density                                   
 (Bose-Einstein condensate)

> Density                   (a) 

> Total flux                              

> Instantaneous heating: temperature 
wave (b)

 Absorption: condensate breaks to              
normal liquid helium

>     increases &    decreases >                    
      changes locally to

> reaching equilibrium requires (c)
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Oscillating Superleak Transducers

> A quenching cavity provides a heat pulse > 2nd Sound

> Transducer consists of a metal plate and a porous 
diaphragm with a thin layer of gold connected as 
capacitor

> 2nd sound wave will make the membrane oscillate

> Voltage changes can be measured

> Determination of quench location via triangulation

> A first setup and first measurements have been realized 
at Cornell University, USA since 2008 [1]

> Preparation for testing a similar setup at DESY

[1] Z.A. Conway et al., Oscillating Superleak Transducers for quench detection in superconducting ILC cavities cooled with He-II 
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Setup and measurements at Cornell University [1] 

[1] Z.A. Conway et al., Oscillating Superleak Transducers for quench detection in superconducting ILC cavities cooled with He-II 
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Calculations for Optimization of OST-Positioning

Goals of the calculations and optimizations were:

1. to create essentials of a numerical routine, describing the 
TESLA cavities,

2. to design a basic setup of a cavity and OST-detectors,
3. to simulate quench spots and 2nd Sound signals,
4. (to estimate errors in the signals and their propagation and)
5. to reconstruct the quench spots using only the 2nd Sound 

signals.
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Calculations for Optimization of OST-Positioning

Goals of the calculations and optimizations were:

1. to create essentials of a numerical routine, describing the 
TESLA cavities,

2. to design a basic setup of a cavity and OST-detectors,
3. to simulate quench spots and 2nd Sound signals,
4. (to estimate errors in the signals and their propagation and)
5. to reconstruct the quench spots using only the 2nd Sound 

signals.

 A brainstorm in a sandbox model



Nov 12th 2009 Creating a Tesla Cavity 4

Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning

• Location of sources in critical regions
a) Cell‘s welding seam
b) Peak of accelerating and magnetic field

 Normal distribution around cell‘s equator

a) b)
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Calculations for Optimization of OST-Positioning

Limitations for detectors:
• Detectors only on top and bottom of the Helium tank
• Distance = double cell radius (206 mm)

• Six detectors necessary for
two signals per event (12 dets total)

Cavity and detectors in 2D
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Calculations for Optimization of OST-Positioning

Only direct lines of sight:
1. Compute all traces
2. Trace elimination:

a) Cylinder rule
b) Next cell rule
c) Wave propagation
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Calculations for Optimization of OST-Positioning

Only direct lines of sight:
1. Compute all traces
2. Trace elimination:

a) Cylinder rule
b) Next cell rule
c) Wave propagation

a)

b) c)
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Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning

 two spots have to be
optically inspected !!
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Calculations for Optimization of OST-Positioning

• Due to wave propagation more signals
• Method of the “least squares” returns a point
• Find closest point on cavity’s surface
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Calculations for Optimization of OST-Positioning
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Calculations for Optimization of OST-Positioning

Results are:
1. A  simple numerical routine has been created.

2. Basic geometry consists of six OST‘s on top and bottom of the He-tank.

3. Critical regions are close to the cell’s equator and can be detected using only 
direct lines of sight.

4. 98,8% of quench spots reconstructed, accuracy of  Δz ≈ 1,5 mm,  Δφ ≈ 4,5 mm.

5. This way of OST-mounting allows a much higher testing-frequency (~ one 
cavity per day) than the contemporary temperature mapping.
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Calculations for Optimization of OST-Positioning

Outlook:
1. Consider a four cavity geometry in one tank

2. Try to deal with the reflected sound (use damping info)

3. Commissioning of the transducer electronics

4. Tests of the OSTs themselves

 Realize the experimental setup

5. Automatic optical inspections (different wavelength)

6. Combine the 2nd Sound analysis and optical inspection

For references and more detailed information, please regard:
Publications 2nd Institute of Physics University of Göttingen

http://physik2.uni-goettingen.de/research/high-energy/publications/publications�
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Calculations for Optimization of OST-Positioning

For references and more detailed information, please regard:
Publications 2nd Institute of Physics University of Göttingen

(should be available soon)

http://physik2.uni-goettingen.de/research/high-energy/publications/publications�
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Calculations for Optimization of OST-Positioning

Errors in the signal are important:
• Distance/“time of flight” dependent error
• Assumption:
+ Normal distribution:

Error distribution for one event with a distance value of ≈ 372.5mm. The error for the same 
event has been generated 1000 times. This shows the gaussian distribution of the error.
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